卷积层里面的填充与步幅

卷积层里面的填充与步幅_第1张图片

 

卷积层里面的填充与步幅_第2张图片

1、填充

填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素)。图5.2里我们在原输入高和宽的两侧分别添加了值为0的元素,使得输入高和宽从3变成了5,并导致输出高和宽由2增加到4。图5.2中的阴影部分为第一个输出元素及其计算所使用的输入和核数组元素:

 卷积层里面的填充与步幅_第3张图片

 下面的例子里我们创建一个高和宽为3的二维卷积层,然后设输入高和宽两侧的填充数分别为1。给定一个高和宽为8的输入,我们发现输出的高和宽也是8。

#comp_conv2d函数负责卷积的计算,里面设置了计算方法以及可以自定义卷积核的大小。填充等相关的参数,x是输入

import torch
from torch import nn

# 定义一个函数来计算卷积层。它对输入和输出做相应的升维和降维
def comp_conv2d(conv2d, X):
    # (1, 1)代表批量大小和通道数(“多输入通道和多输出通道”一节将介绍)均为1
    X = X.view((1, 1) + X.shape)
    Y = conv2d(X)
    return Y.view(Y.shape[2:])  # 排除不关心的前两维:批量和通道

# 注意这里是两侧分别填充1行或列,所以在两侧一共填充2行或列
conv2d = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3, padding=1#padding表示上下左右个填充一行

X = torch.rand(8, 8)#输入一个8×8的矩阵
comp_conv2d(conv2d, X).shape

输出:

torch.Size([8, 8])

当卷积核的高和宽不同时,我们也可以通过设置高和宽上不同的填充数使输出和输入具有相同的高和宽。

# 使用高为5、宽为3的卷积核。在高和宽两侧的填充数分别为2和1
conv2d = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape

输出:

torch.Size([8, 8])

步幅

卷积层里面的填充与步幅_第4张图片

 

下面我们令高和宽上的步幅均为2,从而使输入的高和宽减半。

conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, X).shape

输出:

torch.Size([4, 4])

接下来是一个稍微复杂点儿的例子。

conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, X).shape

输出:

torch.Size([2, 2])

你可能感兴趣的:(#,pytorch,深度学习)