《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili
通过RNN模型,实现输出名字,对应出国家的功能
如果以后数据集为pickle及其他的都可以用这种方法
双向,两边都走一遍,再拼接起来,起到了连接上下文的作用
最终输出的output,hidden
其中output是上面的h0到hn,output是【hnf,hnb】
最终的hidden是两个
gru中因为序列长短不一,许多填充的是0,没必要参加运算,可以加速,使用 pack_padded_sequence
embedding 过程
把为0的去除,其他的拼接在一起,但是他要求的是输入序列的长度递减,所以不行
因此需要排序
接下来是横着取值,按照时间序列取值,可以并行计算
留下了batch_sizes,gru就可以据此得出需要取多少行
import csv
import gzip
import math
import time
import torch
import matplotlib.pyplot as plt
import numpy as np
from torch.nn.utils.rnn import pack_padded_sequence
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
HIDDEN_SIZE = 100
BATCH_SIZE = 256
N_LAYER = 2
N_EPOCHS = 200
N_CHARS = 128
USE_GPU = False
def time_since(since):
s = time.time() - since
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' %(m, s)
def name2list(name):
arr = [ord(c) for c in name]#得到ascii码
return arr, len(arr)
def create_tensor(tensor):
if USE_GPU:
device = torch.device("cuda:0")
tensor = tensor.to(device)
return tensor
def make_tensors(names, countries):
sequences_and_lengths = [name2list(name) for name in names]# s[0] name s[1] 长度
name_sequences = [s1[0] for s1 in sequences_and_lengths]
seq_lengths = torch.LongTensor([s1[1] for s1 in sequences_and_lengths])
countries = countries.long()
#make tensor of name, BatchSize x seqlen
seq_tensor = torch.zeros(len(name_sequences), seq_lengths.max()).long()
for idx, (seq, seqlen) in enumerate(zip(name_sequences, seq_lengths), 0):
seq_tensor[idx, :seqlen] = torch.LongTensor(seq)
#sort by length to use pack padded sequence
seq_lengths, perm_idx = seq_lengths.sort(dim=0, descending=True) #sort 返回两个值 1.排序完的表 2.相对应的索引
seq_tensor = seq_tensor[perm_idx]
countries = countries[perm_idx]
return create_tensor(seq_tensor), \
create_tensor(seq_lengths), \
create_tensor(countries)
class NameDataset(Dataset):
def __init__(self, is_train_set=True):
filename = 'names_train.csv.gz' if is_train_set else 'name_test.csv.gz'
with gzip.open(filename, 'rt') as f:
reader = csv.reader(f)
rows = list(reader)
self.names = [row[0] for row in rows]
self.len = len(self.names)
self.countries = [row[1] for row in rows]
self.country_list = list(sorted(set(self.countries)))
self.country_dict = self.getCountryDict()
self.country_num = len(self.country_list)
def __getitem__(self, idx):
return self.names[idx], self.country_dict[self.countries[idx]]
def __len__(self):
return self.len
def getCountryDict(self):
country_dict = dict()
for idx, country_name in enumerate(self.country_list, 0):
country_dict[country_name] = idx
return country_dict
def idx2country(self, index):
return self.country_list[index]
def getCountriesNum(self):
return self.country_num
trainset = NameDataset(True)
trainloader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
testset = NameDataset(True)
testloader = DataLoader(testset, batch_size=BATCH_SIZE, shuffle=True)
N_COUNTRY = trainset.getCountriesNum()
class RNNClassifier(torch.nn.Module):
def __init__(self, input_size, hidden_size, output_size, n_layers=1, bidirectional=True):
super(RNNClassifier, self).__init__()
self.hidden_size = hidden_size
self.n_layers = n_layers
self.n_directions = 2 if bidirectional else 1
self.embedding = torch.nn.Embedding(input_size, hidden_size)
self.gru = torch.nn.GRU(hidden_size, hidden_size, n_layers,
bidirectional=bidirectional)
self.fc = torch.nn.Linear(hidden_size * self.n_directions, output_size)
# 如果是双向的,最终hidden是两,要乘上2
def init_hidden(self, batch_size):
hidden = torch.zeros(self.n_layers * self.n_directions,
batch_size, self.hidden_size)
return create_tensor(hidden)
def forward(self, input, seq_lengths):
# input shape : B x S -> S x B
input = input.t()
batch_size = input.size(1)
hidden = self.init_hidden(batch_size)
embedding = self.embedding(input)
#pack them up
gru_input = pack_padded_sequence(embedding, seq_lengths)
output, hidden = self.gru(gru_input, hidden)
if self.n_directions == 2:
hidden_cat = torch.cat([hidden[-1], hidden[-2]], dim=1)
else:
hidden_cat = hidden[-1]
fc_output = self.fc(hidden_cat)
return fc_output
def trainModel():
total_loss = 0
for i, (names, countries) in enumerate(trainloader, 1):#1 代表索引i从1开始,也代表轮数
inputs, seq_lengths, target = make_tensors(names, countries)
output = classifier(inputs, seq_lengths)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
if i % 10 == 0:
print(f'[{time_since(start)}] Epoch {epoch}', end='')
print(f'[{i * len(inputs)} / {len(trainset)}]', end='')
print(f'loss={total_loss / (i * len(inputs))}')
return total_loss
def testModel():
correct = 0
total = len(testset)
print('evaluating trained model ...')
with torch.no_grad():
for i, (names, countries) in enumerate(testloader, 1):
inputs, seq_lengths, target = make_tensors(names, countries)
output = classifier(inputs, seq_lengths)
pred = output.max(dim=1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
percent = '%.2f' % (100 * correct / total)
print(f'Test set: Accuracy {correct} / {total} {percent}%')
return correct / total
if __name__ == '__main__':
classifier = RNNClassifier(N_CHARS, HIDDEN_SIZE, N_COUNTRY, N_LAYER)
# 字母表的个数 隐层 国家数 层数
if USE_GPU: #用GPU训练
device = torch.device("cuda:0")
classifier.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)
start = time.time()
print("Training for %d epochs..." % (N_EPOCHS + 1))
acc_list = []
for epoch in range(1, N_EPOCHS + 1):
trainModel()
acc = testModel()
acc_list.append(acc)
epoch = np.arange(1, len(acc_list) + 1, 1)
acc_list = np.array(acc_list)
plt.plot(epoch, acc_list)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.grid()
plt.show()