SiamMask 测试程序分析

之前分析了 DaSiamRPN 的测试代码,侧重于执行细节。到了 SiamMask,似乎主题应该有所升华。故事的明线为跟踪器构成,暗线为训练流图。
相比于 DaSiamRPN,SiamMask 不仅网络结构是现代化的,系统设计也更具匠心。这便于我们一窥其轮廓。
SiamMask/models 文件夹下定义了网络的基本架构。

SiamMask
Features
RPN
Mask

网络工作流为:

z_f
'x_f
z_f
'x_f
exemplar
Features
instance
Features
RPN
Mask

SiamMask/experiments/siammask 文件夹定义了实际网络。具体到 Custom,其多了一个 Refine 模块用于融合不同层次上的特征。

Custom
ResDown
UP
MaskCorr
Refine

SiamMask/tools 文件夹中定义了测试和评估程序。

下面介绍其环境配置。编译 Cython 需要 python3-devel 库。

SiamMask/requirements.txt

项目推荐安装以下包:

  • Cython 是 Python 及其扩展 Cython 编程语言(基于 Pyrex)的优化静态编译器。它使 Python 编写 C 扩展就像 Python 本身一样简单。
  • Colorama 实现跨平台彩色终端文本。
  • NumPy 是使用 Python 进行科学计算的基础包。
  • Fire 用于自动生成命令行界面的库。(未见使用)
  • torch 指定了0.4.1版本。
  • torchvision 用于 Torch 深度学习的图像、视频数据集和模型。
  • Numba 是一个开源 JIT 编译器,它将 Python 和 NumPy 代码的子集转换为快速机器码。(在 pysot 中使用)
  • SciPy 是数学、科学和工程的开源软件。SciPy 库依赖于 NumPy,它提供方便快捷的 N 维数组操作。(未见使用)
  • h5py 从 Python 读取和写入 HDF5文件。(未见使用)
  • pandas 用于数据分析、时间序列和统计的强大的数据结构。(未见使用)
  • tqdm Python 和 CLI 的快速、可扩展的进度条。
  • opencv-python 用于 Python 的非官方预构建 OpenCV 包。

get_test_data.sh 脚本首先借助 jvlmdr/trackdat 下载 vot2016 vot2018 搭配作者相应的 json 文件。然后下载 DAVIS-2017-trainval-480p.zip。DAVIS 2017 在每个视频序列中标注了多个实例。
jvlmdr/trackdat 中解析 json 文件需要安装 jq。

test_mask_refine.sh

test_mask_refine.sh
test.py

检查输入参数3是否存在。

if [ -z "$4" ]
  then
    echo "Need input parameter!"
    echo "Usage: bash `basename "$0"` \$CONFIG \$MODEL \$DATASET \$GPUID"
    exit
fi

git-rev-parse 挑选并管理参数。–show-toplevel 显示顶级目录的绝对路径。
将项目加入 Python 的环境变量中,创建“logs”文件夹。

ROOT=`git rev-parse --show-toplevel`
export PYTHONPATH=$ROOT:$PYTHONPATH

mkdir -p logs

导入参数后运行 test.py。

config=$1
model=$2
dataset=$3
gpu=$4

CUDA_VISIBLE_DEVICES=$gpu python -u $ROOT/tools/test.py \
    --config $config \
    --resume $model \
    --mask --refine \
    --dataset $dataset 2>&1 | tee logs/test_$dataset.log

test.py

Created with Raphaël 2.2.0 main config, model, dataset load_config add_file_handler Custom load_pretrain load_dataset vos_enable? track_vos End track_vot yes no

load_config 加载 JSON 配置文件并设置args.arch的值。
add_file_handler 创建一个记录器并绑定文件句柄。

    global args, logger, v_id
    args = parser.parse_args()
    cfg = load_config(args)

    init_log('global', logging.INFO)
    if args.log != "":
        add_file_handler('global', args.log, logging.INFO)

    logger = logging.getLogger('global')
    logger.info(args)

Custom 为论文实现的网络。
如果不是“Custom”,加载 models 下指定的结构。
load_pretrain 能够处理网络之间的不一致。

    # setup model
    if args.arch == 'Custom':
        from custom import Custom
        model = Custom(anchors=cfg['anchors'])
    else:
        model = models.__dict__[args.arch](anchors=cfg['anchors'])

    if args.resume:
        assert isfile(args.resume), '{} is not a valid file'.format(args.resume)
        model = load_pretrain(model, args.resume)
    model.eval()
    model = model.cuda()

load_dataset 能够加载 VOT、DAVIS、ytb_vos 三种数据集。

    # setup dataset
    dataset = load_dataset(args.dataset)

仅以上三种数据源支持掩膜输出。
调用 track_vos 或者 track_vot。

    # VOS or VOT?
    if args.dataset in ['DAVIS2016', 'DAVIS2017', 'ytb_vos'] and args.mask:
        vos_enable = True  # enable Mask output
    else:
        vos_enable = False

    total_lost = 0  # VOT
    iou_lists = []  # VOS
    speed_list = []

    for v_id, video in enumerate(dataset.keys(), start=1):
        if vos_enable:
            iou_list, speed = track_vos(model, dataset[video], cfg['hp'] if 'hp' in cfg.keys() else None,
                                 args.mask, args.refine, args.dataset in ['DAVIS2017', 'ytb_vos'])
            iou_lists.append(iou_list)
        else:
            lost, speed = track_vot(model, dataset[video], cfg['hp'] if 'hp' in cfg.keys() else None,
                             args.mask, args.refine)
            total_lost += lost
        speed_list.append(speed)

记录最终结果。

    # report final result
    if vos_enable:
        for thr, iou in zip(thrs, np.mean(np.concatenate(iou_lists), axis=0)):
            logger.info('Segmentation Threshold {:.2f} mIoU: {:.3f}'.format(thr, iou))
    else:
        logger.info('Total Lost: {:d}'.format(total_lost))

    logger.info('Mean Speed: {:.2f} FPS'.format(np.mean(speed_list)))

track_vos

track_vos 函数中使用了 Image.open。分割数据的标注亦为图片。

    image_files = video['image_files']

    annos = [np.array(Image.open(x)) for x in video['anno_files']]
    if 'anno_init_files' in video:
        annos_init = [np.array(Image.open(x)) for x in video['anno_init_files']]
    else:
        annos_init = [annos[0]]

"DAVIS2017"和"ytb_vos"会开启多目标跟踪。

    if not mot_enable:
        annos = [(anno > 0).astype(np.uint8) for anno in annos]
        annos_init = [(anno_init > 0).astype(np.uint8) for anno_init in annos_init]

    if 'start_frame' in video:
        object_ids = [int(id) for id in video['start_frame']]
    else:
        object_ids = [o_id for o_id in np.unique(annos[0]) if o_id != 0]
        if len(object_ids) != len(annos_init):
            annos_init = annos_init*len(object_ids)
    object_num = len(object_ids)
    

每个目标都遍历图像,在起止帧之间执行跟踪。
pred_masks记录所有的 mask。
boundingRect() 计算点集或灰度图像的非零像素的垂直矩形。

    toc = 0
    pred_masks = np.zeros((object_num, len(image_files), annos[0].shape[0], annos[0].shape[1]))-1
    for obj_id, o_id in enumerate(object_ids):

        if 'start_frame' in video:
            start_frame = video['start_frame'][str(o_id)]
            end_frame = video['end_frame'][str(o_id)]
        else:
            start_frame, end_frame = 0, len(image_files)

        for f, image_file in enumerate(image_files):
            im = cv2.imread(image_file)
            tic = cv2.getTickCount()
            if f == start_frame:  # init
                mask = annos_init[obj_id] == o_id
                x, y, w, h = cv2.boundingRect((mask).astype(np.uint8))
                cx, cy = x + w/2, y + h/2
                target_pos = np.array([cx, cy])
                target_sz = np.array([w, h])
                state = siamese_init(im, target_pos, target_sz, model, hp)  # init tracker
            elif end_frame >= f > start_frame:  # tracking
                state = siamese_track(state, im, mask_enable, refine_enable)  # track
                mask = state['mask']
            toc += cv2.getTickCount() - tic
            if end_frame >= f >= start_frame:
                pred_masks[obj_id, f, :, :] = mask
    toc /= cv2.getTickFrequency()

MultiBatchIouMeter 批量计算 IoU。

    if len(annos) == len(image_files):
        multi_mean_iou = MultiBatchIouMeter(thrs, pred_masks, annos,
                                            start=video['start_frame'] if 'start_frame' in video else None,
                                            end=video['end_frame'] if 'end_frame' in video else None)
        for i in range(object_num):
            for j, thr in enumerate(thrs):
                logger.info('Fusion Multi Object{:20s} IOU at {:.2f}: {:.4f}'.format(video['name'] + '_' + str(i + 1), thr,
                                                                           multi_mean_iou[i, j]))
    else:
        multi_mean_iou = []

pred_mask_final合并图像上多个目标的模板索引,默认0通道为背景。索引直接保存为图片无法可视化。

    if args.save_mask:
        video_path = join('test', args.dataset, 'SiamMask', video['name'])
        if not isdir(video_path): makedirs(video_path)
        pred_mask_final = np.array(pred_masks)
        pred_mask_final = (np.argmax(pred_mask_final, axis=0).astype('uint8') + 1) * (
                np.max(pred_mask_final, axis=0) > state['p'].seg_thr).astype('uint8')
        for i in range(pred_mask_final.shape[0]):
            cv2.imwrite(join(video_path, image_files[i].split('/')[-1].split('.')[0] + '.png'), pred_mask_final[i].astype(np.uint8))

由于图像序列处理完才显示,所以有些卡顿。

    if args.visualization:
        pred_mask_final = np.array(pred_masks)
        pred_mask_final = (np.argmax(pred_mask_final, axis=0).astype('uint8') + 1) * (
                np.max(pred_mask_final, axis=0) > state['p'].seg_thr).astype('uint8')
        COLORS = np.random.randint(128, 255, size=(object_num, 3), dtype="uint8")
        COLORS = np.vstack([[0, 0, 0], COLORS]).astype("uint8")
        mask = COLORS[pred_mask_final]
        for f, image_file in enumerate(image_files):
            output = ((0.4 * cv2.imread(image_file)) + (0.6 * mask[f,:,:,:])).astype("uint8")
            cv2.imshow("mask", output)
            cv2.waitKey(1)

    logger.info('({:d}) Video: {:12s} Time: {:02.1f}s Speed: {:3.1f}fps'.format(
        v_id, video['name'], toc, f*len(object_ids) / toc))

    return multi_mean_iou, f*len(object_ids) / toc

track_vot

Created with Raphaël 2.2.0 track_vot model, video get_axis_aligned_bbox siamese_init cxy_wh_2_rect siamese_track cxy_wh_2_rect vot_overlap

regions记录目标框以及状态。

    regions = []  # result and states[1 init / 2 lost / 0 skip]
    image_files, gt = video['image_files'], video['gt']

    start_frame, end_frame, lost_times, toc = 0, len(image_files), 0, 0

get_axis_aligned_bbox 能够得到目标的最小外接矩形。
遍历图像序列,由目标出现的帧初始化。

    for f, image_file in enumerate(image_files):
        im = cv2.imread(image_file)
        tic = cv2.getTickCount()
        if f == start_frame:  # init
            cx, cy, w, h = get_axis_aligned_bbox(gt[f])
            target_pos = np.array([cx, cy])
            target_sz = np.array([w, h])
            state = siamese_init(im, target_pos, target_sz, model, hp)  # init tracker
            location = cxy_wh_2_rect(state['target_pos'], state['target_sz'])
            regions.append(1 if 'VOT' in args.dataset else gt[f])

在后续帧跟踪,由state获取目标框。
vot_overlap 计算两个多边形之间的重叠。

        elif f > start_frame:  # tracking
            state = siamese_track(state, im, mask_enable, refine_enable)  # track
            if mask_enable:
                location = state['ploygon'].flatten()
                mask = state['mask']
            else:
                location = cxy_wh_2_rect(state['target_pos'], state['target_sz'])
                mask = []

            if 'VOT' in args.dataset:
                gt_polygon = ((gt[f][0], gt[f][1]), (gt[f][2], gt[f][3]),
                              (gt[f][4], gt[f][5]), (gt[f][6], gt[f][7]))
                if mask_enable:
                    pred_polygon = ((location[0], location[1]), (location[2], location[3]),
                                    (location[4], location[5]), (location[6], location[7]))
                else:
                    pred_polygon = ((location[0], location[1]),
                                    (location[0] + location[2], location[1]),
                                    (location[0] + location[2], location[1] + location[3]),
                                    (location[0], location[1] + location[3]))
                b_overlap = vot_overlap(gt_polygon, pred_polygon, (im.shape[1], im.shape[0]))
            else:
                b_overlap = 1

OTB 测试一跟到底,VOT 跟丢则隔几帧重置。

            if b_overlap:
                regions.append(location)
            else:  # lost
                regions.append(2)
                lost_times += 1
                start_frame = f + 5  # skip 5 frames
        else:  # skip
            regions.append(0)
        toc += cv2.getTickCount() - tic

处理完一帧后进行显示。这里复制得到im_show似乎并无必要。

        if args.visualization and f >= start_frame:  # visualization (skip lost frame)
            im_show = im.copy()
            if f == 0: cv2.destroyAllWindows()
            if gt.shape[0] > f:
                if len(gt[f]) == 8:
                    cv2.polylines(im_show, [np.array(gt[f], np.int).reshape((-1, 1, 2))], True, (0, 255, 0), 3)
                else:
                    cv2.rectangle(im_show, (gt[f, 0], gt[f, 1]), (gt[f, 0] + gt[f, 2], gt[f, 1] + gt[f, 3]), (0, 255, 0), 3)
            if len(location) == 8:
                if mask_enable:
                    mask = mask > state['p'].seg_thr
                    im_show[:, :, 2] = mask * 255 + (1 - mask) * im_show[:, :, 2]
                location_int = np.int0(location)
                cv2.polylines(im_show, [location_int.reshape((-1, 1, 2))], True, (0, 255, 255), 3)
            else:
                location = [int(l) for l in location]
                cv2.rectangle(im_show, (location[0], location[1]),
                              (location[0] + location[2], location[1] + location[3]), (0, 255, 255), 3)
            cv2.putText(im_show, str(f), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
            cv2.putText(im_show, str(lost_times), (40, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

            cv2.imshow(video['name'], im_show)
            cv2.waitKey(1)
    toc /= cv2.getTickFrequency()

跟踪完成,记录结果到文本文件。

    # save result
    name = args.arch.split('.')[0] + '_' + ('mask_' if mask_enable else '') + ('refine_' if refine_enable else '') +\
           args.resume.split('/')[-1].split('.')[0]

    if 'VOT' in args.dataset:
        video_path = join('test', args.dataset, name,
                          'baseline', video['name'])
        if not isdir(video_path): makedirs(video_path)
        result_path = join(video_path, '{:s}_001.txt'.format(video['name']))
        with open(result_path, "w") as fin:
            for x in regions:
                fin.write("{:d}\n".format(x)) if isinstance(x, int) else \
                        fin.write(','.join([vot_float2str("%.4f", i) for i in x]) + '\n')
    else:  # OTB
        video_path = join('test', args.dataset, name)
        if not isdir(video_path): makedirs(video_path)
        result_path = join(video_path, '{:s}.txt'.format(video['name']))
        with open(result_path, "w") as fin:
            for x in regions:
                fin.write(','.join([str(i) for i in x])+'\n')

    logger.info('({:d}) Video: {:12s} Time: {:02.1f}s Speed: {:3.1f}fps Lost: {:d}'.format(
        v_id, video['name'], toc, f / toc, lost_times))

    return lost_times, f / toc

get_axis_aligned_bbox

numpy.linalg.norm 计算矩阵或矢量的范数。默认计算矩阵元素平方和再开根号。
求多边形中心(cx, cy),外接矩形[(x1, y1), (x2, y2)]
A1是平行四边形拉伸为矩形后的面积,A2为外接矩形的面积。

    nv = region.size
    if nv == 8:
        cx = np.mean(region[0::2])
        cy = np.mean(region[1::2])
        x1 = min(region[0::2])
        x2 = max(region[0::2])
        y1 = min(region[1::2])
        y2 = max(region[1::2])
        A1 = np.linalg.norm(region[0:2] - region[2:4]) * np.linalg.norm(region[2:4] - region[4:6])
        A2 = (x2 - x1) * (y2 - y1)
        s = np.sqrt(A1 / A2)
        w = s * (x2 - x1) + 1
        h = s * (y2 - y1) + 1
    else:
        x = region[0]
        y = region[1]
        w = region[2]
        h = region[3]
        cx = x+w/2
        cy = y+h/2

    return cx, cy, w, h

MultiBatchIouMeter

获得预测掩膜及标注的数量。构造预测结果的 id 列表object_ids

    targets = np.array(targets)
    outputs = np.array(outputs)

    num_frame = targets.shape[0]
    if start is None:
        object_ids = np.array(list(range(outputs.shape[0]))) + 1
    else:
        object_ids = [int(id) for id in start]

    num_object = len(object_ids)
    res = np.zeros((num_object, len(thrs)), dtype=np.float32)

output_max_id为每个像素位置预测的 id,0通道为背景。
outputs_max合并一张图上的预测。
thrs为全局变量。对于每个阈值,output_thr过滤结果,对于每个目标,target_j选中其表注像素位置。

    output_max_id = np.argmax(outputs, axis=0).astype('uint8')+1
    outputs_max = np.max(outputs, axis=0)
    for k, thr in enumerate(thrs):
        output_thr = outputs_max > thr
        for j in range(num_object):
            target_j = targets == object_ids[j]

对于每幅图像,pred为目标 j 的预测掩码。统计数量,计算与标注的交并比。

            if start is None:
                start_frame, end_frame = 1, num_frame - 1
            else:
                start_frame, end_frame = start[str(object_ids[j])] + 1, end[str(object_ids[j])] - 1
            iou = []
            for i in range(start_frame, end_frame):
                pred = (output_thr[i] * output_max_id[i]) == (j+1)
                mask_sum = (pred == 1).astype(np.uint8) + (target_j[i] > 0).astype(np.uint8)
                intxn = np.sum(mask_sum == 2)
                union = np.sum(mask_sum > 0)
                if union > 0:
                    iou.append(intxn / union)
                elif union == 0 and intxn == 0:
                    iou.append(1)
            res[j, k] = np.mean(iou)
    return res

siamese_init

siamese_init 构造state字典。

state
TrackerConfig
net
window
avg_chans,target_pos,target_sz

TrackerConfig 配置参数。
generate_anchor 生成锚点。

    state = dict()
    state['im_h'] = im.shape[0]
    state['im_w'] = im.shape[1]
    p = TrackerConfig()
    p.update(hp, model.anchors)

    p.renew()

    net = model
    p.scales = model.anchors['scales']
    p.ratios = model.anchors['ratios']
    p.anchor_num = len(p.ratios) * len(p.scales)
    p.anchor = generate_anchor(model.anchors, p.score_size)
    avg_chans = np.mean(im, axis=(0, 1))

    wc_z = target_sz[0] + p.context_amount * sum(target_sz)
    hc_z = target_sz[1] + p.context_amount * sum(target_sz)
    s_z = round(np.sqrt(wc_z * hc_z))
    # initialize the exemplar
    z_crop = get_subwindow_tracking(im, target_pos, p.exemplar_size, s_z, avg_chans)

    z = Variable(z_crop.unsqueeze(0))
    net.template(z.cuda())

numpy.outer 计算两个向量的外积。

    if p.windowing == 'cosine':
        window = np.outer(np.hanning(p.score_size), np.hanning(p.score_size))
    elif p.windowing == 'uniform':
        window = np.ones((p.score_size, p.score_size))
    window = np.tile(window.flatten(), p.anchor_num)

    state['p'] = p
    state['net'] = net
    state['avg_chans'] = avg_chans
    state['window'] = window
    state['target_pos'] = target_pos
    state['target_sz'] = target_sz
    return state

generate_anchor

由 Anchors 类创建锚点,转译为[cx,cy,w,h]格式。

    anchors = Anchors(cfg)
    anchor = anchors.anchors
    x1, y1, x2, y2 = anchor[:, 0], anchor[:, 1], anchor[:, 2], anchor[:, 3]
    anchor = np.stack([(x1+x2)*0.5, (y1+y2)*0.5, x2-x1, y2-y1], 1)

    total_stride = anchors.stride
    anchor_num = anchor.shape[0]

按原来的方式广播得到所有的锚点。复制锚点,然后添加不同位置的偏移量。

    anchor = np.tile(anchor, score_size * score_size).reshape((-1, 4))
    ori = - (score_size // 2) * total_stride
    xx, yy = np.meshgrid([ori + total_stride * dx for dx in range(score_size)],
                         [ori + total_stride * dy for dy in range(score_size)])
    xx, yy = np.tile(xx.flatten(), (anchor_num, 1)).flatten(), \
             np.tile(yy.flatten(), (anchor_num, 1)).flatten()
    anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32)
    return anchor

siamese_track

mask
no_mask
siamese_track
get_subwindow_tracking
net.track_mask
net.track
    p = state['p']
    net = state['net']
    avg_chans = state['avg_chans']
    window = state['window']
    target_pos = state['target_pos']
    target_sz = state['target_sz']

由扩展后的宽高计算等效面积。使用与模板分支相同的缩放系数得到检测区域。

    wc_x = target_sz[1] + p.context_amount * sum(target_sz)
    hc_x = target_sz[0] + p.context_amount * sum(target_sz)
    s_x = np.sqrt(wc_x * hc_x)
    scale_x = p.exemplar_size / s_x
    d_search = (p.instance_size - p.exemplar_size) / 2
    pad = d_search / scale_x
    s_x = s_x + 2 * pad
    crop_box = [target_pos[0] - round(s_x) / 2, target_pos[1] - round(s_x) / 2, round(s_x), round(s_x)]

    # extract scaled crops for search region x at previous target position
    x_crop = Variable(get_subwindow_tracking(im, target_pos, p.instance_size, round(s_x), avg_chans).unsqueeze(0))

运行网络。

    if mask_enable:
        score, delta, mask = net.track_mask(x_crop.cuda())
    else:
        score, delta = net.track(x_crop.cuda())

解码出预测框,并根据位置、宽高比和位移量惩罚得分,挑选出最优预测。

    delta = delta.permute(1, 2, 3, 0).contiguous().view(4, -1).data.cpu().numpy()
    score = F.softmax(score.permute(1, 2, 3, 0).contiguous().view(2, -1).permute(1, 0), dim=1).data[:,
            1].cpu().numpy()

    delta[0, :] = delta[0, :] * p.anchor[:, 2] + p.anchor[:, 0]
    delta[1, :] = delta[1, :] * p.anchor[:, 3] + p.anchor[:, 1]
    delta[2, :] = np.exp(delta[2, :]) * p.anchor[:, 2]
    delta[3, :] = np.exp(delta[3, :]) * p.anchor[:, 3]

    def change(r):
        return np.maximum(r, 1. / r)

    def sz(w, h):
        pad = (w + h) * 0.5
        sz2 = (w + pad) * (h + pad)
        return np.sqrt(sz2)

    def sz_wh(wh):
        pad = (wh[0] + wh[1]) * 0.5
        sz2 = (wh[0] + pad) * (wh[1] + pad)
        return np.sqrt(sz2)

    # size penalty
    target_sz_in_crop = target_sz*scale_x
    s_c = change(sz(delta[2, :], delta[3, :]) / (sz_wh(target_sz_in_crop)))  # scale penalty
    r_c = change((target_sz_in_crop[0] / target_sz_in_crop[1]) / (delta[2, :] / delta[3, :]))  # ratio penalty

    penalty = np.exp(-(r_c * s_c - 1) * p.penalty_k)
    pscore = penalty * score

    # cos window (motion model)
    pscore = pscore * (1 - p.window_influence) + window * p.window_influence
    best_pscore_id = np.argmax(pscore)

    pred_in_crop = delta[:, best_pscore_id] / scale_x
    lr = penalty[best_pscore_id] * score[best_pscore_id] * p.lr  # lr for OTB

    res_x = pred_in_crop[0] + target_pos[0]
    res_y = pred_in_crop[1] + target_pos[1]

    res_w = target_sz[0] * (1 - lr) + pred_in_crop[2] * lr
    res_h = target_sz[1] * (1 - lr) + pred_in_crop[3] * lr

    target_pos = np.array([res_x, res_y])
    target_sz = np.array([res_w, res_h])

numpy.unravel_index 将平面索引或平面索引数组转换为坐标数组的元组。
best_pscore_id得到特征图上的位置。
track_refine 函数运行 Refine 模块,由相关特征图上 1 × 1 × 256 1\times 1\times 256 1×1×256 的特征向量与检测下采样前的特征图得到目标掩膜。

    # for Mask Branch
    if mask_enable:
        best_pscore_id_mask = np.unravel_index(best_pscore_id, (5, p.score_size, p.score_size))
        delta_x, delta_y = best_pscore_id_mask[2], best_pscore_id_mask[1]

        if refine_enable:
            mask = net.track_refine((delta_y, delta_x)).cuda().sigmoid().squeeze().view(
                p.out_size, p.out_size).cpu().data.numpy()
        else:
            mask = mask[0, :, delta_y, delta_x].sigmoid(). \
                squeeze().view(p.out_size, p.out_size).cpu().data.numpy()

warpAffine() 对图像应用仿射变换。
手动构造变换矩阵mappingab为尺度系数,cd为平移量。

        def crop_back(image, bbox, out_sz, padding=-1):
            a = (out_sz[0] - 1) / bbox[2]
            b = (out_sz[1] - 1) / bbox[3]
            c = -a * bbox[0]
            d = -b * bbox[1]
            mapping = np.array([[a, 0, c],
                                [0, b, d]]).astype(np.float)
            crop = cv2.warpAffine(image, mapping, (out_sz[0], out_sz[1]),
                                  flags=cv2.INTER_LINEAR,
                                  borderMode=cv2.BORDER_CONSTANT,
                                  borderValue=padding)
            return crop

crop_box为检测截取框,格式为[x,y,width,height]s为缩放系数。sub_box为预测的模板区域框。
p.out_size似乎与p.exemplar_size混用。
back_box为背景框。为什么back_box的左上角坐标为负?

        s = crop_box[2] / p.instance_size
        sub_box = [crop_box[0] + (delta_x - p.base_size / 2) * p.total_stride * s,
                   crop_box[1] + (delta_y - p.base_size / 2) * p.total_stride * s,
                   s * p.exemplar_size, s * p.exemplar_size]
        s = p.out_size / sub_box[2]
        back_box = [-sub_box[0] * s, -sub_box[1] * s, state['im_w'] * s, state['im_h'] * s]
        mask_in_img = crop_back(mask, back_box, (state['im_w'], state['im_h']))

OpenCV4 的 findContours() 函数返回值数量少。
在二进制图像中查找轮廓。
minAreaRect() 寻找包围输入2D 点集的最小区域的旋转矩形。
boxPoints 查找旋转矩形的四个顶点。用于绘制旋转的矩形。

        target_mask = (mask_in_img > p.seg_thr).astype(np.uint8)
        if cv2.__version__[-5] == '4':
            contours, _ = cv2.findContours(target_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        else:
            _, contours, _ = cv2.findContours(target_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        cnt_area = [cv2.contourArea(cnt) for cnt in contours]
        if len(contours) != 0 and np.max(cnt_area) > 100:
            contour = contours[np.argmax(cnt_area)]  # use max area polygon
            polygon = contour.reshape(-1, 2)
            # pbox = cv2.boundingRect(polygon)  # Min Max Rectangle
            prbox = cv2.boxPoints(cv2.minAreaRect(polygon))  # Rotated Rectangle

            # box_in_img = pbox
            rbox_in_img = prbox
        else:  # empty mask
            location = cxy_wh_2_rect(target_pos, target_sz)
            rbox_in_img = np.array([[location[0], location[1]],
                                    [location[0] + location[2], location[1]],
                                    [location[0] + location[2], location[1] + location[3]],
                                    [location[0], location[1] + location[3]]])

由结果更新状态。

    target_pos[0] = max(0, min(state['im_w'], target_pos[0]))
    target_pos[1] = max(0, min(state['im_h'], target_pos[1]))
    target_sz[0] = max(10, min(state['im_w'], target_sz[0]))
    target_sz[1] = max(10, min(state['im_h'], target_sz[1]))

    state['target_pos'] = target_pos
    state['target_sz'] = target_sz
    state['score'] = score
    state['mask'] = mask_in_img if mask_enable else []
    state['ploygon'] = rbox_in_img if mask_enable else []
    return state

SiamMask

SiamMask 是网络结构的抽象,主要定义模块。

    def __init__(self, anchors=None, o_sz=127, g_sz=127):
        super(SiamMask, self).__init__()
        self.anchors = anchors  # anchor_cfg
        self.anchor_num = len(self.anchors["ratios"]) * len(self.anchors["scales"])
        self.anchor = Anchors(anchors)
        self.features = None
        self.rpn_model = None
        self.mask_model = None
        self.o_sz = o_sz
        self.g_sz = g_sz
        self.all_anchors = None

set_all_anchors

set_all_anchors
Anchors.generate_all_anchors

set_all_anchors 函数在测试中并没有用到。

        # cx,cy,w,h
        if not self.anchor.generate_all_anchors(image_center, size):
            return
        all_anchors = self.anchor.all_anchors[1]  # cx, cy, w, h
        self.all_anchors = torch.from_numpy(all_anchors).float().cuda()
        self.all_anchors = [self.all_anchors[i] for i in range(4)]

feature_extractor

    def feature_extractor(self, x):
        return self.features(x)

rpn

    def rpn(self, template, search):
        pred_cls, pred_loc = self.rpn_model(template, search)
        return pred_cls, pred_loc

mask

    def mask(self, template, search):
        pred_mask = self.mask_model(template, search)
        return pred_mask

template

    def template(self, z):
        self.zf = self.feature_extractor(z)
        cls_kernel, loc_kernel = self.rpn_model.template(self.zf)
        return cls_kernel, loc_kernel

track

    def track(self, x, cls_kernel=None, loc_kernel=None, softmax=False):
        xf = self.feature_extractor(x)
        rpn_pred_cls, rpn_pred_loc = self.rpn_model.track(xf, cls_kernel, loc_kernel)
        if softmax:
            rpn_pred_cls = self.softmax(rpn_pred_cls)
        return rpn_pred_cls, rpn_pred_loc

Anchors

object.__dict__ 是用于存储对象(可写)属性的字典或其他映射对象。

    def __init__(self, cfg):
        self.stride = 8
        self.ratios = [0.33, 0.5, 1, 2, 3]
        self.scales = [8]
        self.round_dight = 0
        self.image_center = 0
        self.size = 0

        self.__dict__.update(cfg)

        self.anchor_num = len(self.scales) * len(self.ratios)
        self.anchors = None  # in single position (anchor_num*4)
        self.all_anchors = None  # in all position 2*(4*anchor_num*h*w)
        self.generate_anchors()

generate_anchors

round_dight似乎是为了兼容 Python2和3的舍入。
基础锚点的中心为原点,mmdetection
的 AnchorGenerator 支持这一操作,而 maskrcnn-benchmark
中的 AnchorGenerator 不能。
为什么中间结果是整形而返回值却不是?这与 AnchorGenerator 正好相反。

        self.anchors = np.zeros((self.anchor_num, 4), dtype=np.float32)

        size = self.stride * self.stride
        count = 0
        for r in self.ratios:
            if self.round_dight > 0:
                ws = round(math.sqrt(size*1. / r), self.round_dight)
                hs = round(ws * r, self.round_dight)
            else:
                ws = int(math.sqrt(size*1. / r))
                hs = int(ws * r)

            for s in self.scales:
                w = ws * s
                h = hs * s
                self.anchors[count][:] = [-w*0.5, -h*0.5, w*0.5, h*0.5][:]
                count += 1

generate_all_anchors

generate_all_anchors 同时生成了两种数据格式的 anchor。
如果仅调用一次,为何不在初始化函数中调用?

避免重复生成?
self.image_center是整张图吗?

        if self.image_center == im_c and self.size == size:
            return False
        self.image_center = im_c
        self.size = size

a0x表示 a n c h o r 0 \mathrm{anchor}_0 anchor0 的 xy 坐标,即 x 和 y 对称。
x1y1x2y2以及cxcywh的形状为 [anchor_num, 1, 1]
self.anchors形状为[A, 4],由于不加 padding 会使得anchor起始点不是图像边缘,generate_all_anchors 输入为中心点和空间尺寸。

corner2center

        a0x = im_c - size // 2 * self.stride
        ori = np.array([a0x] * 4, dtype=np.float32)
        zero_anchors = self.anchors + ori

        x1 = zero_anchors[:, 0]
        y1 = zero_anchors[:, 1]
        x2 = zero_anchors[:, 2]
        y2 = zero_anchors[:, 3]

        x1, y1, x2, y2 = map(lambda x: x.reshape(self.anchor_num, 1, 1), [x1, y1, x2, y2])
        cx, cy, w, h = corner2center([x1, y1, x2, y2])

disp_x[1, 1, size]disp_y[1, size, 1],两个相加会怎样?
cx[anchor_num, 1, size]cy[anchor_num, size,1]
zero让其变为[anchor_num, size,1]
利用 numpy 运算来 broadcast。

        disp_x = np.arange(0, size).reshape(1, 1, -1) * self.stride
        disp_y = np.arange(0, size).reshape(1, -1, 1) * self.stride

        cx = cx + disp_x
        cy = cy + disp_y

        # broadcast
        zero = np.zeros((self.anchor_num, size, size), dtype=np.float32)
        cx, cy, w, h = map(lambda x: x + zero, [cx, cy, w, h])
        x1, y1, x2, y2 = center2corner([cx, cy, w, h])

        self.all_anchors = np.stack([x1, y1, x2, y2]), np.stack([cx, cy, w, h])
        return True

Custom

Custom 是实际网络的载体。增加了 track_mask、track_refine、track_refine 和 refine 函数用于处理 mask。

refine
Refine.forward
track_refine
    def __init__(self, pretrain=False, **kwargs):
        super(Custom, self).__init__(**kwargs)
        self.features = ResDown(pretrain=pretrain)
        self.rpn_model = UP(anchor_num=self.anchor_num, feature_in=256, feature_out=256)
        self.mask_model = MaskCorr()
        self.refine_model = Refine()

    def refine(self, f, pos=None):
        return self.refine_model(f, pos)

    def template(self, template):
        self.zf = self.features(template)

    def track(self, search):
        search = self.features(search)
        rpn_pred_cls, rpn_pred_loc = self.rpn(self.zf, search)
        return rpn_pred_cls, rpn_pred_loc

    def track_mask(self, search):
        self.feature, self.search = self.features.forward_all(search)
        rpn_pred_cls, rpn_pred_loc = self.rpn(self.zf, self.search)
        self.corr_feature = self.mask_model.mask.forward_corr(self.zf, self.search)
        pred_mask = self.mask_model.mask.head(self.corr_feature)
        return rpn_pred_cls, rpn_pred_loc, pred_mask

    def track_refine(self, pos):
        pred_mask = self.refine_model(self.feature, self.corr_feature, pos=pos)
        return pred_mask

MaskCorr

MaskCorr
Mask

MaskCorr 并未从 Mask 中受益,而是直接使用了 DepthCorr。

注意这里 Mask 分支输出通道数巨大。

    def __init__(self, oSz=63):
        super(MaskCorr, self).__init__()
        self.oSz = oSz
        self.mask = DepthCorr(256, 256, self.oSz**2)

    def forward(self, z, x):
        return self.mask(z, x)

DepthCorr

kernel
conv_kernel
conv2d_dw_group
input
conv_search
head

DepthCorr 运行需要两个输入。

    def __init__(self, in_channels, hidden, out_channels, kernel_size=3):
        super(DepthCorr, self).__init__()
        # adjust layer for asymmetrical features
        self.conv_kernel = nn.Sequential(
                nn.Conv2d(in_channels, hidden, kernel_size=kernel_size, bias=False),
                nn.BatchNorm2d(hidden),
                nn.ReLU(inplace=True),
                )
        self.conv_search = nn.Sequential(
                nn.Conv2d(in_channels, hidden, kernel_size=kernel_size, bias=False),
                nn.BatchNorm2d(hidden),
                nn.ReLU(inplace=True),
                )

        self.head = nn.Sequential(
                nn.Conv2d(hidden, hidden, kernel_size=1, bias=False),
                nn.BatchNorm2d(hidden),
                nn.ReLU(inplace=True),
                nn.Conv2d(hidden, out_channels, kernel_size=1)
                )
    def forward_corr(self, kernel, input):
        kernel = self.conv_kernel(kernel)
        input = self.conv_search(input)
        feature = conv2d_dw_group(input, kernel)
        return feature

    def forward(self, kernel, search):
        feature = self.forward_corr(kernel, search)
        out = self.head(feature)
    return out

conv2d_dw_group

只在 DepthCorr 中调用,为什么不整合到函数中?conv2d_dw_group 中变换xkernel的维度。

    batch, channel = kernel.shape[:2]
    x = x.view(1, batch*channel, x.size(2), x.size(3))  # 1 * (b*c) * k * k
    kernel = kernel.view(batch*channel, 1, kernel.size(2), kernel.size(3))  # (b*c) * 1 * H * W
    out = F.conv2d(x, kernel, groups=batch*channel)
    out = out.view(batch, channel, out.size(2), out.size(3))
    return out

Refine

掩模细化模块。
SiamMask 测试程序分析_第1张图片论文图9. 使用堆叠细化模块生成掩模的示意图。
SiamMask 测试程序分析_第2张图片
图7. 细化模块 U 3 U_3 U3 的示例。

self.v2self.v1self.v0为垂直分支(vertical),压缩通道;self.h2self.h1self.h0作用于水平分支(horizontal),消化融合结果。

模型实现与图中略有不同。

torch.nn.ConvTranspose2d 在由多个输入平面组成的输入图像上应用2D 转置卷积运算符。该模块可以看作 Conv2d 相对于其输入的梯度。它也被称为分数步长卷积或反卷积(尽管它不是实际的去卷积操作)。

    def __init__(self):
        """
        Mask refinement module
        Please refer SiamMask (Appendix A)
        https://arxiv.org/abs/1812.05050
        """
        super(Refine, self).__init__()
        self.v0 = nn.Sequential(nn.Conv2d(64, 16, 3, padding=1), nn.ReLU(),
                           nn.Conv2d(16, 4, 3, padding=1), nn.ReLU())

        self.v1 = nn.Sequential(nn.Conv2d(256, 64, 3, padding=1), nn.ReLU(),
                           nn.Conv2d(64, 16, 3, padding=1), nn.ReLU())

        self.v2 = nn.Sequential(nn.Conv2d(512, 128, 3, padding=1), nn.ReLU(),
                           nn.Conv2d(128, 32, 3, padding=1), nn.ReLU())

        self.h2 = nn.Sequential(nn.Conv2d(32, 32, 3, padding=1), nn.ReLU(),
                           nn.Conv2d(32, 32, 3, padding=1), nn.ReLU())

        self.h1 = nn.Sequential(nn.Conv2d(16, 16, 3, padding=1), nn.ReLU(),
                           nn.Conv2d(16, 16, 3, padding=1), nn.ReLU())

        self.h0 = nn.Sequential(nn.Conv2d(4, 4, 3, padding=1), nn.ReLU(),
                           nn.Conv2d(4, 4, 3, padding=1), nn.ReLU())

        self.deconv = nn.ConvTranspose2d(256, 32, 15, 15)

        self.post0 = nn.Conv2d(32, 16, 3, padding=1)
        self.post1 = nn.Conv2d(16, 4, 3, padding=1)
        self.post2 = nn.Conv2d(4, 1, 3, padding=1)

torch.nn.functional.pad 对于参数pad,要填充的维度数满足 ⌊ len(pad) 2 ⌋ \left\lfloor\frac{\text{len(pad)}}{2}\right\rfloor 2len(pad) 并且填充维度设置从最后一个维度依次向前。例如,要填充输入张量的最后一个维度,则pad具有形式(padLeft, padRight);填充输入张量的最后2个维度使用(padLeft, padRight, padTop, padBottom);要填充最后3个维度,请使用(padLeft, padRight, padTop, padBottom, padFront, padBack)

f为 ResNet 的特征图元组。
f[0]形状为[1, 64, 125, 125]
f[1]形状为[1, 256, 63, 63]
f[2]形状为[1, 512, 31, 31]
f[3]形状为[1, 1024, 31, 31]
p0``p1``p2表示补0填充后,取出目标位置的特征图。
p3为相关特征图上的特征向量。

令人困惑的是p0p1p2中,目标特征块位于左上角而不是居中。

    def forward(self, f, corr_feature, pos=None):
        p0 = torch.nn.functional.pad(f[0], [16,16,16,16])[:, :, 4*pos[0]:4*pos[0]+61, 4*pos[1]:4*pos[1]+61]
        p1 = torch.nn.functional.pad(f[1], [8,8,8,8])[:, :, 2*pos[0]:2*pos[0]+31, 2*pos[1]:2*pos[1]+31]
        p2 = torch.nn.functional.pad(f[2], [4,4,4,4])[:, :, pos[0]:pos[0]+15, pos[1]:pos[1]+15]

        p3 = corr_feature[:, :, pos[0], pos[1]].view(-1, 256, 1, 1)

        out = self.deconv(p3)
        out = self.post0(F.upsample(self.h2(out) + self.v2(p2), size=(31, 31)))
        out = self.post1(F.upsample(self.h1(out) + self.v1(p1), size=(61, 61)))
        out = self.post2(F.upsample(self.h0(out) + self.v0(p0), size=(127, 127)))
        out = out.view(-1, 127*127)
        return out
```## [ResDownS](https://github.com/foolwood/SiamMask/blob/master/experiments/siammask/custom.py#L17)


[ResDownS](https://github.com/foolwood/SiamMask/blob/master/experiments/siammask/custom.py#L17) 模块中,判断特征图尺寸,如果是 exemplar 则进行中心截取。
```python
    def __init__(self, inplane, outplane):
        super(ResDownS, self).__init__()
        self.downsample = nn.Sequential(
                nn.Conv2d(inplane, outplane, kernel_size=1, bias=False),
                nn.BatchNorm2d(outplane))

    def forward(self, x):
        x = self.downsample(x)
        if x.size(3) < 20:
            l, r = 4, -4
            x = x[:, :, l:r, l:r]
        return x

ResDown

ResDown
resnet50
ResDownS

ResDown 得到下采样之后的 resnet50 特征。

    def __init__(self, pretrain=False):
        super(ResDown, self).__init__()
        self.features = resnet50(layer3=True, layer4=False)
        if pretrain:
            load_pretrain(self.features, 'resnet.model')

        self.downsample = ResDownS(1024, 256)

    def forward(self, x):
        output = self.features(x)
        p3 = self.downsample(output[-1])
        return p3

    def forward_all(self, x):
        output = self.features(x)
        p3 = self.downsample(output[-1])
        return output, p3

get_dataset_zoo

检查data文件夹下的数据,文件夹命名需要与--dataset参数一致。

    root = realpath(join(dirname(__file__), '../data'))
    zoos = listdir(root)

    def valid(x):
        y = join(root, x)
        if not isdir(y): return False

        return exists(join(y, 'list.txt')) \
               or exists(join(y, 'train', 'meta.json'))\
               or exists(join(y, 'ImageSets', '2016', 'val.txt'))

    zoos = list(filter(valid, zoos))
    return zoos

总结

以上分析了 SiamMask 的大体结构。可以看出,数据增广、锚框管理以及损失函数的缺失导致无法组织训练。项目缺失的版图可以参照检测框架进行补充。这里,open-mmlab/mmdetection 比 facebookresearch/maskrcnn-benchmark 更为适宜。facebookresearch/maskrcnn-benchmark 虽然组织清晰,但仅有 Resize 和 RandomHorizontalFlip 变换。而 open-mmlab/mmdetection 的 ExtraAugmentation 提供:

  • PhotoMetricDistortion
  • Expand
  • RandomCrop

并且,AnchorGenerator 支持设置锚点中心,与 SiamMask 兼容。

一个好消息是作者承诺训练代码在下个月开源:
SiamMask 测试程序分析_第3张图片

参考资料:

  • 什么情况下应该设置 cudnn.benchmark = True?
  • StrangerZhang/ pysot-toolkit
  • noagarcia/visdom-tutorial
  • fatal error: Python.h: No such file or directory
  • Download jq
  • Shell scripting: -z and -n options with if
  • 7.3. Other Comparison Operators
  • 4.12.3. Command Line Arguments
  • Minimum-Area Rectangle Containing a Set of Points
  • minimum-area-bounding-rectangle/python/min_bounding_rect.py
  • minAreaRect()
  • Finding minimum-area-rectangle for given points?
  • How to resume interrupted download automatically in curl?
  • What is an upright rectangle?
  • What is numpy method int0?

你可能感兴趣的:(VisualTracking,PyTorch,视觉跟踪,Visual,Tracking,孪生网络)