>python可视化神器altair

python可视化神器

  • 一.些简单图形的绘制
    • (一).柱状图
      • 1. 然后我们还可以设置高亮柱状图的某一根柱子,其他柱子设置为一样的颜色:
      • 2. 翻转图片,同时添加图片标注,在图上加上数据
      • 3.在图形上添加线条
      • 4. 组合图,柱状图+折线图
    • (二).热力图
    • (三).直方图
    • (四).线图
    • (五).带有鼠标提示的散点图
    • (六).堆积面积图
    • (七).扇形图
  • 二.进阶操作
    • 1. 折线图
      • 1.制作一个带有95%置信区间带的折线图。
      • 2.折线图标记
      • 3.在不同的位置设置折线图线条的粗细
    • 2.标准的面积堆积图
    • 3. 带有缺口的扇形图
      • 1.饼图
      • 2.辐射状的饼图
    • 4.散点图进阶
      • 1.带有误差棒的散点图
      • 2. 散点图加标签
    • 5. 世界地图
  • 三.图片的保存
  • 四.图片一些属性的配置
  • 优缺点

python可视化神器altair

今天介绍一个python库altair,它的语法与r的ggplot有点类似

对中文的兼容性也很好,以一幅简单的散点图举例:

安装说明:

pip install altair
pip install vega-datasets#注意这里是"-"不是"_",我们要使用到其中的数据
import altair as alt
from vega_datasets import data
cars = data.cars()
cars

alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
    shape='Origin'
).interactive()

输出以下图形,点击旁边的三个点,还能将其保存为各种形式的图片。

>python可视化神器altair_第1张图片

可以发现它的语法也是及其简单:

  • cars是我们所需要的数据,他是一个数据框(dataframe的形式)

  • make-point 就是散点图

  • x=‘Horsepower’ , y='Miles_per_Gallon’分别对应我们的x轴和y轴数据

  • color=‘Origin’ 根据产地来映射颜色,这与ggplot的语法很相似

  • shape=‘Origin’,这里就是根据产地来映射点的形状

  • interactive() 生成交互式图片,效果如下

>python可视化神器altair_第2张图片

一.些简单图形的绘制

(一).柱状图

语法很简单

import altair as alt
import pandas as pd

source = pd.DataFrame({
    'a': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'],
    'b': [28, 55, 43, 91, 81, 53, 19, 87, 52]
})

alt.Chart(source).mark_bar().encode(
    x='a',
    y='b',
    color="a"
)

>python可视化神器altair_第3张图片

1. 然后我们还可以设置高亮柱状图的某一根柱子,其他柱子设置为一样的颜色:

import altair as alt
import pandas as pd

source = pd.DataFrame({
    'a': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'],
    'b': [28, 55, 43, 91, 81, 53, 19, 87, 52]
})

alt.Chart(source).mark_bar().encode(
    x='a:O',
    y='b:Q',
    color=alt.condition(
        alt.datum.a=="A",#这里设置条件,如果a的值是"A",需要改动的只有a这个地方和"A"这个地方,后者是前者满足的条件
        alt.value("red"),#如果满足上面的条件颜色就变成红色
        alt.value("yellow")#如果不满足就变成黄色
    )
).properties(width=600,height=400)#这里的height和width分别设置图片的大小和高度

>python可视化神器altair_第4张图片

2. 翻转图片,同时添加图片标注,在图上加上数据

呃呃呃,其实翻转图片,就是x和y轴数据互换

import altair as alt
import pandas as pd

source = pd.DataFrame({
    'a': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'],
    'b': [28, 55, 43, 91, 81, 53, 19, 87, 52]
})

bars=   alt.Chart(source).mark_bar().encode(
    x='b:Q',
    y='a:O',
    color="a")
text = bars.mark_text(
    align='right',#在这里选择一个['left', 'center', 'right']
    baseline='middle',
    dx=10  # Nudges text to right so it doesn't appear on top of the bar
).encode(
    text='a'#这里是添加数据
)
bars+text

>python可视化神器altair_第5张图片

3.在图形上添加线条

import altair as alt
import pandas as pd

source = pd.DataFrame({
    'a': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'],
    'b': [28, 55, 43, 91, 81, 53, 19, 87, 52]
})

bars=   alt.Chart(source).mark_bar().encode(
    x='a',
    y='b',
    color="a")

rule = alt.Chart(source).mark_rule(color='red').encode(
    y='mean(b)',
)
(bars+rule).properties(width=600,height=400)

>python可视化神器altair_第6张图片

4. 组合图,柱状图+折线图

首先我们需要固定好x轴

import altair as alt
from vega_datasets import data
import pandas as pd

source = pd.DataFrame({
    'a': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'],
    'b': [28, 55, 43, 91, 81, 53, 19, 87, 52]
})
base = alt.Chart(source).encode(x='a:O')

bar = base.mark_bar().encode(y='b:Q')

line =  base.mark_line(color='red').encode(
    y='b:Q'
)

(bar + line).properties(width=600)

>python可视化神器altair_第7张图片

(二).热力图

import altair as alt
import numpy as np
import pandas as pd

# Compute x^2 + y^2 across a 2D grid
x, y = np.meshgrid(range(-5, 5), range(-5, 5))
z = x ** 2 + y ** 2

# Convert this grid to columnar data expected by Altair
source = pd.DataFrame({'x': x.ravel(),
                     'y': y.ravel(),
                     'z': z.ravel()})

alt.Chart(source).mark_rect().encode(
    x='x:O',
    y='y:O',
    color='z:Q'
)

>python可视化神器altair_第8张图片

(三).直方图

统计不同范围的数字出现的次数

这里还是以我们一开始cars数据举例说明:

import altair as alt
from vega_datasets import data
cars = data.cars()
cars
alt.Chart(cars).mark_bar().encode(
    alt.X("Displacement", bin=True),
    y='count()',
    color="Origin"
)

>python可视化神器altair_第9张图片

(四).线图

可以用来画函数曲线,比如:
y = sin ⁡ x 5 \displaystyle y=\frac{\sin x}{5} y=5sinx

import altair as alt
import numpy as np
import pandas as pd

x = np.arange(100)
source = pd.DataFrame({
  'x': x,
  'f(x)': np.sin(x / 5)
})

alt.Chart(source).mark_line().encode(
    x='x',
    y='f(x)'
)

>python可视化神器altair_第10张图片

(五).带有鼠标提示的散点图

就是当你点击某个位置的时候,会给你相应的信息,比如说它的坐标

比如我在下面的代码中设置了tooltip,当我点击某个点时就会显示出相应的名称,归属地,马力

import altair as alt
from vega_datasets import data

source = data.cars()

alt.Chart(source).mark_circle(size=60).encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
    tooltip=['Name', 'Origin', 'Horsepower', 'Miles_per_Gallon']
).interactive()

>python可视化神器altair_第11张图片

(六).堆积面积图

比如下面的代码,这里的x就是不同的年份,y就是使用不同原料的净发电量

import altair as alt
from vega_datasets import data

source = data.iowa_electricity()
source
alt.Chart(source).mark_area().encode(
    x="year:T",
    y="net_generation:Q",
    color="source:N"
)

>python可视化神器altair_第12张图片

(七).扇形图

import pandas as pd
import altair as alt

source = pd.DataFrame({"category": [1, 2, 3, 4, 5, 6], "value": [4, 6, 10, 3, 7, 8]})

alt.Chart(source).mark_arc(innerRadius=50).encode(
    theta=alt.Theta(field="value", type="quantitative"),
    color=alt.Color(field="category", type="nominal"),
)

>python可视化神器altair_第13张图片

二.进阶操作

1. 折线图

1.制作一个带有95%置信区间带的折线图。

## 带有置信区间
import altair as alt
from vega_datasets import data

source = data.cars()

line = alt.Chart(source).mark_line().encode(
    x='Year',
    y='mean(Miles_per_Gallon)'
)

band = alt.Chart(source).mark_errorband(extent='ci').encode(
    x='Year',
    y=alt.Y('Miles_per_Gallon', title='Miles/Gallon'),
)

band + line

>python可视化神器altair_第14张图片

2.折线图标记

#折线图标记
import altair as alt
import numpy as np
import pandas as pd

x = np.arange(100)
source = pd.DataFrame({
  'x': x,
  'f(x)': np.sin(x / 5)
})

alt.Chart(source).mark_line(
    point=alt.OverlayMarkDef(color="red")
).encode(
    x='x',
    y='f(x)'
)

>python可视化神器altair_第15张图片

3.在不同的位置设置折线图线条的粗细

#线条粗细随之变化
import altair as alt
from vega_datasets import data

source = data.wheat()

alt.Chart(source).mark_trail().encode(
    x='year:T',
    y='wheat:Q',
    size='wheat:Q'
)

>python可视化神器altair_第16张图片

2.标准的面积堆积图

区别就是他会堆满整个图片>python可视化神器altair_第17张图片

import altair as alt
from vega_datasets import data

source = data.iowa_electricity()

alt.Chart(source).mark_area().encode(
    x="year:T",
    y=alt.Y("net_generation:Q", stack="normalize"),
    color="source:N"
)

3. 带有缺口的扇形图

import numpy as np
import altair as alt

alt.Chart().mark_arc(color="gold").encode(
    theta=alt.datum((5 / 8) * np.pi, scale=None),
    theta2=alt.datum((19 / 8) * np.pi),
    radius=alt.datum(100, scale=None),
)

>python可视化神器altair_第18张图片

1.饼图

import pandas as pd
import altair as alt

source = pd.DataFrame({"category": [1, 2, 3, 4, 5, 6], "value": [4, 6, 10, 3, 7, 8]})

alt.Chart(source).mark_arc().encode(
    theta=alt.Theta(field="value", type="quantitative"),
    color=alt.Color(field="category", type="nominal"),
)

>python可视化神器altair_第19张图片

2.辐射状的饼图

import pandas as pd
import altair as alt

source = pd.DataFrame({"values": [12, 23, 47, 6, 52, 19]})

base = alt.Chart(source).encode(
    theta=alt.Theta("values:Q", stack=True),
    radius=alt.Radius("values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)),
    color="values:N",
)

c1 = base.mark_arc(innerRadius=20, stroke="#fff")

c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")

c1 + c2

>python可视化神器altair_第20张图片

4.散点图进阶

1.带有误差棒的散点图

import altair as alt
import pandas as pd
import numpy as np

# generate some data points with uncertainties
np.random.seed(0)
x = [1, 2, 3, 4, 5]
y = np.random.normal(10, 0.5, size=len(x))
yerr = 0.2

# set up data frame
source = pd.DataFrame({"x": x, "y": y, "yerr": yerr})

# the base chart
base = alt.Chart(source).transform_calculate(
    ymin="datum.y-datum.yerr",
    ymax="datum.y+datum.yerr"
)

# generate the points
points = base.mark_point(
    filled=True,
    size=50,
    color='black'
).encode(
    x=alt.X('x', scale=alt.Scale(domain=(0, 6))),
    y=alt.Y('y', scale=alt.Scale(zero=False))
)

# generate the error bars
errorbars = base.mark_errorbar().encode(
    x="x",
    y="ymin:Q",
    y2="ymax:Q"
)

points + errorbars

>python可视化神器altair_第21张图片

2. 散点图加标签

#散点图加标签
import altair as alt
import pandas as pd

source = pd.DataFrame({
    'x': [1, 3, 5, 7, 9],
    'y': [1, 3, 5, 7, 9],
    'label': ['我', '是', '你', '爸', '爸']
})

points = alt.Chart(source).mark_point().encode(
    x='x:Q',
    y='y:Q'
)

text = points.mark_text(
    align='left',
    baseline='middle',
    dx=7
).encode(
    text='label'
)

points + text

>python可视化神器altair_第22张图片

5. 世界地图

import altair as alt
from vega_datasets import data

# Data generators for the background
sphere = alt.sphere()
graticule = alt.graticule()

# Source of land data
source = alt.topo_feature(data.world_110m.url, 'countries')

# Layering and configuring the components
alt.layer(
    alt.Chart(sphere).mark_geoshape(fill='lightblue'),
    alt.Chart(graticule).mark_geoshape(stroke='white', strokeWidth=0.5),
    alt.Chart(source).mark_geoshape(fill='ForestGreen', stroke='black')
).project(
    'naturalEarth1'
).properties(width=600, height=400).configure_view(stroke=None)

>python可视化神器altair_第23张图片

三.图片的保存

你可以将其保存为svg,png,html,pdf,json等格式

import altair as alt
from vega_datasets import data

chart = alt.Chart(data.cars.url).mark_point().encode(
    x='Horsepower:Q',
    y='Miles_per_Gallon:Q',
    color='Origin:N'
)

chart.save('chart.json')
chart.save('chart.html')
chart.save('chart.png')
chart.save('chart.svg')
chart.save('chart.pdf')	

同时设置保存图片的大小

chart.save('chart.png', scale_factor=2.0)

四.图片一些属性的配置

比如说给图片添加标题:

#世界地图
import altair as alt
from vega_datasets import data

# Data generators for the background
sphere = alt.sphere()
graticule = alt.graticule()

# Source of land data
source = alt.topo_feature(data.world_110m.url, 'countries')

# Layering and configuring the components
alt.layer(
    alt.Chart(sphere).mark_geoshape(fill='lightblue'),
    alt.Chart(graticule).mark_geoshape(stroke='white', strokeWidth=0.5),
    alt.Chart(source).mark_geoshape(fill='ForestGreen', stroke='black')
).project(
    'naturalEarth1'
).properties(width=600, height=400,title="世界地图").configure_view(stroke=None)

>python可视化神器altair_第24张图片

Property Type Description
arc RectConfig Arc-specific Config
area AreaConfig Area-Specific Config
aria boolean A boolean flag indicating if ARIA default attributes should be included for marks and guides (SVG output only). If false, the "aria-hidden" attribute will be set for all guides, removing them from the ARIA accessibility tree and Vega-Lite will not generate default descriptions for marks.Default value: true.
autosize anyOf(AutosizeType, AutoSizeParams) How the visualization size should be determined. If a string, should be one of "pad", "fit" or "none". Object values can additionally specify parameters for content sizing and automatic resizing.Default value: pad
axis AxisConfig Axis configuration, which determines default properties for all x and y axes. For a full list of axis configuration options, please see the corresponding section of the axis documentation.
axisBand AxisConfig Config for axes with “band” scales.
axisBottom AxisConfig Config for x-axis along the bottom edge of the chart.
axisDiscrete AxisConfig Config for axes with “point” or “band” scales.
axisLeft AxisConfig Config for y-axis along the left edge of the chart.
axisPoint AxisConfig Config for axes with “point” scales.
axisQuantitative AxisConfig Config for quantitative axes.
axisRight AxisConfig Config for y-axis along the right edge of the chart.
axisTemporal AxisConfig Config for temporal axes.
axisTop AxisConfig Config for x-axis along the top edge of the chart.
axisX AxisConfig X-axis specific config.
axisXBand AxisConfig Config for x-axes with “band” scales.
axisXDiscrete AxisConfig Config for x-axes with “point” or “band” scales.
axisXPoint AxisConfig Config for x-axes with “point” scales.
axisXQuantitative AxisConfig Config for x-quantitative axes.
axisXTemporal AxisConfig Config for x-temporal axes.
axisY AxisConfig Y-axis specific config.
axisYBand AxisConfig Config for y-axes with “band” scales.
axisYDiscrete AxisConfig Config for y-axes with “point” or “band” scales.
axisYPoint AxisConfig Config for y-axes with “point” scales.
axisYQuantitative AxisConfig Config for y-quantitative axes.
axisYTemporal AxisConfig Config for y-temporal axes.
background anyOf(Color, ExprRef) CSS color property to use as the background of the entire view.Default value: "white"
bar BarConfig Bar-Specific Config
boxplot BoxPlotConfig Box Config
circle MarkConfig Circle-Specific Config
concat CompositionConfig Default configuration for all concatenation and repeat view composition operators (concat, hconcat, vconcat, and repeat)
countTitle string Default axis and legend title for count fields.Default value: 'Count of Records.
customFormatTypes boolean Allow the formatType property for text marks and guides to accept a custom formatter function registered as a Vega expression.
errorband ErrorBandConfig ErrorBand Config
errorbar ErrorBarConfig ErrorBar Config
facet CompositionConfig Default configuration for the facet view composition operator
fieldTitle [‘verbal’, ‘functional’, ‘plain’] Defines how Vega-Lite generates title for fields. There are three possible styles: - "verbal" (Default) - displays function in a verbal style (e.g., “Sum of field”, “Year-month of date”, “field (binned)”). - "function" - displays function using parentheses and capitalized texts (e.g., “SUM(field)”, “YEARMONTH(date)”, “BIN(field)”). - "plain" - displays only the field name without functions (e.g., “field”, “date”, “field”).
font string Default font for all text marks, titles, and labels.
geoshape MarkConfig Geoshape-Specific Config
header HeaderConfig Header configuration, which determines default properties for all headers.For a full list of header configuration options, please see the corresponding section of in the header documentation.
headerColumn HeaderConfig Header configuration, which determines default properties for column headers.For a full list of header configuration options, please see the corresponding section of in the header documentation.
headerFacet HeaderConfig Header configuration, which determines default properties for non-row/column facet headers.For a full list of header configuration options, please see the corresponding section of in the header documentation.
headerRow HeaderConfig Header configuration, which determines default properties for row headers.For a full list of header configuration options, please see the corresponding section of in the header documentation.
image RectConfig Image-specific Config
legend LegendConfig Legend configuration, which determines default properties for all legends. For a full list of legend configuration options, please see the corresponding section of in the legend documentation.
line LineConfig Line-Specific Config
lineBreak anyOf(string, ExprRef) A delimiter, such as a newline character, upon which to break text strings into multiple lines. This property provides a global default for text marks, which is overridden by mark or style config settings, and by the lineBreak mark encoding channel. If signal-valued, either string or regular expression (regexp) values are valid.
mark MarkConfig Mark Config
numberFormat string D3 Number format for guide labels and text marks. For example "s" for SI units. Use D3’s number format pattern.
padding anyOf(Padding, ExprRef) The default visualization padding, in pixels, from the edge of the visualization canvas to the data rectangle. If a number, specifies padding for all sides. If an object, the value should have the format {"left": 5, "top": 5, "right": 5, "bottom": 5} to specify padding for each side of the visualization.Default value: 5
params array(Parameter) Dynamic variables that parameterize a visualization.
point MarkConfig Point-Specific Config
projection ProjectionConfig Projection configuration, which determines default properties for all projections. For a full list of projection configuration options, please see the corresponding section of the projection documentation.
range RangeConfig An object hash that defines default range arrays or schemes for using with scales. For a full list of scale range configuration options, please see the corresponding section of the scale documentation.
rect RectConfig Rect-Specific Config
rule MarkConfig Rule-Specific Config
scale ScaleConfig Scale configuration determines default properties for all scales. For a full list of scale configuration options, please see the corresponding section of the scale documentation.
selection SelectionConfig An object hash for defining default properties for each type of selections.
square MarkConfig Square-Specific Config
style StyleConfigIndex An object hash that defines key-value mappings to determine default properties for marks with a given style. The keys represent styles names; the values have to be valid mark configuration objects.
text MarkConfig Text-Specific Config
tick TickConfig Tick-Specific Config
timeFormat string Default time format for raw time values (without time units) in text marks, legend labels and header labels.Default value: "%b %d, %Y" Note: Axes automatically determine the format for each label automatically so this config does not affect axes.
title TitleConfig Title configuration, which determines default properties for all titles. For a full list of title configuration options, please see the corresponding section of the title documentation.
trail LineConfig Trail-Specific Config
view ViewConfig Default properties for single view plots.

优缺点

优点:语法简单,对中文的兼容性好,与r语言的ggplot很类似。

缺点:生成图片不能直接复制,需要保存到本地,这一点不如matplotlib

有兴趣的研究的话:点击此链接

展示一下部分图片

>python可视化神器altair_第25张图片

>python可视化神器altair_第26张图片

>python可视化神器altair_第27张图片

>python可视化神器altair_第28张图片

>python可视化神器altair_第29张图片

参考:更多内容请点我:https://altair-viz.github.io/gallery/index.html

你可能感兴趣的:(python,python,人工智能,开发语言)