- 人工智能之数学基础:数学对人工智能技术发展的作用
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能深度学习机器学习神经网络自然语言处理数学
本文重点数学是人工智能技术发展的基础,它提供了人工智能技术所需的数学理论和算法,包括概率论、统计学、线性代数、微积分、图论等等。本文将从以下几个方面探讨数学对人工智能技术发展的作用。概率论和统计学概率论和统计学是人工智能技术中最为重要的数学分支之一。概率论和统计学的应用范围非常广泛,包括机器学习、数据挖掘、自然语言处理、计算机视觉等领域。在人工智能技术中,概率论和统计学主要用于处理不确定性的问题,
- 数学中的“矩”
heraldww
数学概率论人工智能机器学习
数学中的“矩”矩的数学意义,高度总结:数学上,“矩”是一组点组成的模型的特定的数量测度。在力学和统计学中都有用到“矩”。如果这些点代表“质量”,那么:零阶矩表示所有点的质量;一阶矩表示质心;二阶矩表示转动惯量。如果这些点代表“概率密度”,那么:零阶矩表示这些点的总概率(也就是1);一阶矩表示期望;二阶(中心)矩表示方差;三阶(中心)矩表示偏斜度;四阶(中心)矩表示峰度;这个数学上的概念和物理上的“
- 本福特定律: 为什么银行存款、河流长度等集合的首位数字更容易出现 1 而不是 9?
go
银行存款、河流长度等数据的首位数字更容易出现1而不是9,这背后的数学原理是本福特定律(Benford'sLaw)。本福特定律的概述本福特定律(Benford'sLaw)又称首位数字定律,是一种描述自然生成数据中数字分布规律的统计学现象。该定律揭示了在多种实际数据集中,数字1-9作为首位数字出现的概率呈现特定规律性分布。数学表达式首位数字d出现的概率为:P(d)=log₁₀(1+1/d),其中d∈{
- LoRA中黑塞矩阵、Fisher信息矩阵是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵机器学习人工智能transformer深度学习算法线性代数
LoRA中黑塞矩阵、Fisher信息矩阵是什么1.三者的核心概念黑塞矩阵(Hessian)二阶导数矩阵,用于优化问题中判断函数的凸性(如牛顿法),或计算参数更新方向(如拟牛顿法)。Fisher信息矩阵(FisherInformationMatrix,FIM)统计学中衡量参数估计的不确定性,反映数据中包含的关于参数的信息量。在机器学习中常用于自然梯度下降(NaturalGradientDescent
- 统计机器学习 (Statistical Machine Learning) 原理与代码实例讲解
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
统计机器学习(StatisticalMachineLearning)原理与代码实例讲解1.背景介绍统计机器学习是现代人工智能和数据科学的核心领域之一。它结合了统计学和计算机科学的理论与方法,通过数据驱动的方式来构建预测模型和决策系统。统计机器学习不仅在学术研究中占据重要地位,还在工业界有广泛应用,如推荐系统、图像识别、自然语言处理等。2.核心概念与联系2.1统计学与机器学习的关系统计学关注数据的收
- 如果我想成为一名大数据和算法工程师,我需要学会哪些技能,获取大厂的offer
红豆和绿豆
杂谈大数据算法
成为一名大数据和算法工程师并获取大厂Offer,需要掌握一系列核心技能,并具备丰富的项目经验与扎实的理论基础。以下是详细的技能要求和建议:---###**1.数学与理论基础**-**数学知识**:掌握线性代数、微积分、概率论和统计学,这些是设计和理解算法的基础。-**机器学习理论**:深入理解常见机器学习算法(如线性回归、逻辑回归、决策树、随机森林、SVM、K-means等),了解其原理、优缺点及
- 【机器学习-基础知识】统计和贝叶斯推断
人类发明了工具
ML&DL学习分享机器学习概率论人工智能
1.概率论基本概念回顾1.概率分布定义:概率分布(ProbabilityDistribution)指的是随机变量所有可能取值及其对应概率的集合。它描述了一个随机变量可能取的所有值以及每个值被取到的概率。对于离散型随机变量,使用概率质量函数来描述。对于连续型随机变量,使用概率密度函数来描述。举例说明:投掷一颗六面骰子,每个面上的数字(1到6)都有相同的概率(1/6)出现,这就是一个简单的概率分布例子
- 定积分及其在概率论与统计学中的应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
定积分及其在概率论与统计学中的应用1.背景介绍1.1定积分的概念定积分是微积分学中一个基本概念,它是对连续函数在一个区间上的累积变化量进行测度。定积分可以看作是对无限小量的累加,是对函数在给定区间内的面积进行测量。1.2定积分在概率论与统计学中的重要性在概率论和统计学中,定积分扮演着非常重要的角色。概率论中的概率密度函数、累积分布函数等核心概念都需要借助定积分来定义和计算。统计学中的置信区间估计、
- AI人工智能中的概率论与统计学原理与Python实战:Python实现概率模型
AI天才研究院
AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的不断发展,概率论与统计学在人工智能领域的应用越来越广泛。概率论与统计学是人工智能中的基础知识之一,它们在机器学习、深度学习、自然语言处理等领域都有着重要的作用。本文将介绍概率论与统计学的核心概念、算法原理、具体操作步骤以及Python实现方法,并通过具体代码实例进行详细解释。2.核心概念与联系2.1概率论与统计学的区别概率论是一门数学学科,它研究随机事件发生的可能性。
- 新手村:数据预处理-异常值检测方法
嘉羽很烦
机器学习机器学习
机器学习中异常值检测方法一、前置条件知识领域要求编程基础Python基础(变量、循环、函数)、JupyterNotebook或PyCharm使用。统计学基础理解均值、中位数、标准差、四分位数、正态分布、Z-score等概念。机器学习基础熟悉监督/无监督学习、分类、聚类、回归等基本概念。数据预处理数据清洗、特征缩放(标准化/归一化)、数据可视化(Matplotlib/Seaborn)。二、渐进式学习
- C++设计模式-原型模式:从基本介绍,内部原理、应用场景、使用方法,常见问题和解决方案进行深度解析
牵牛老人
C++专栏c++设计模式原型模式
一、基本介绍:理解"克隆"的设计哲学1.1什么是原型模式原型模式(PrototypePattern)是一种创建型设计模式,其核心思想是通过复制现有对象来创建新对象,而非传统的新建实例方式。如同生物学的细胞分裂机制,原型对象作为"母体",通过自我复制产生完全相同的新个体。该模式在C++中通常借助拷贝构造函数或克隆接口实现,特别适用于以下场景:对象初始化成本高昂(如需要读取大文件);系统需要动态生成多
- 计算机视觉入门
109702008
人工智能#深度学习计算机视觉人工智能
计算机视觉(ComputerVision)是一门涉及使机器能够从图像或者多维数据中提取信息,解释、理解并对物体或场景进行处理的学科。以下是一个基本的计算机视觉入门学习路线,旨在为刚刚接触这一领域的学习者提供指导。1.基础知识储备数学基础:线性代数、概率论和数理统计、微积分、优化理论。编程语言:掌握至少一门编程语言,Python是目前在计算机视觉领域最流行的语言,其次是C++。2.计算机视觉基础数字
- 23章9节:分层随机抽样及其在R语言中的实现与验证
DAT|R科学与人工智能
用R探索医药数据科学r语言开发语言r-4.2.1机器学习人工智能算法
在统计学和数据科学的实际工作中,抽样方法始终扮演着至关重要的角色。如何从庞大的总体中获取具有代表性的样本,一直是数据分析过程中需要面对的核心问题之一。分层随机抽样作为一种常用的抽样方法,因其能够针对总体中的不同亚群体(层)进行有针对性的抽样,从而提高样本代表性、降低抽样误差,被广泛应用于社会调查、市场研究、医学试验等各个领域。本文旨在系统地阐述分层随机抽样的理论基础、抽样方法及其在R语言中的实现,
- 【儿童自信的生物学机制】
调皮的芋头
机器学习数据库
在继续深入探讨儿童自信的生物学机制时,我们需要将视角拓展至神经递质系统、突触动态平衡以及跨脑区网络整合等更深层的神经发育规律。以下从三个新颖维度展开分析:一、神经递质系统的发育失衡现象儿童自信水平随年龄增长呈现U型曲线变化的现象,确实蕴含着复杂的生物进化机制与神经发育规律。从进化生物学视角来看,人类幼态持续特征决定了早期自信的生存价值:新生儿通过哭闹表达需求(平均每天1.5小时发声),这种原始自信
- 应用统计学学什么科目_统计学考研科目分别有哪些?你都知道吗
心言星愿
应用统计学学什么科目
在现实社会社会中统计学的应用范围是比较广泛的,想要报考统计学的朋友也是不再少数的,那么问题就来了关于统计学应该要学习哪一些科目呢,下面就来详细的看一下关于统计学方向具体的统计学考研科目分别有那些。首先对于统计学来讲英语政治史必然的初试科目,而专业课的考研科目具体是什么还是要看你选择的院校的实际出题情况了,所以在确定了考研科目之后一定要在在确定一下你想去的高校,以便能够更好的准备。在来看一下在学校方
- 2025 年最值得收听的 AI 播客推荐!助你轻松掌握人工智能前沿动态!
真智AI
人工智能开发语言机器学习
如今,几乎每个人都被告知需要提升技能,而当前许多组织最看重的技能之一就是人工智能(AI)。学习AI相关技能通常涉及数学、统计学和机器学习,但除此之外,你还需要了解行业趋势、业内人士的观点以及各大公司的动态。然而,学习并不意味着时刻都要埋头苦读!有时候,你需要给大脑一个喘息的机会,同时依然能获取有价值的信息。而收听AI相关的播客,就是一个轻松高效的方式。以下是2025年你必须关注的AI播客!1.Th
- 智商测试原理全解析:从心理学到统计学,一文读懂(包含数据接口
2401_84193787
职场发展职场和发展求职招聘单一职责原则
智力测验(IntelligenceTest)是有关人的普通心智功能的各种测验的总称,又称普通能力测验。编制这类测验的目的是为了综合评定人的智力水平。早期编制的智力测验多采取个人测验的形式,这是单独评估心智功能的最好方法。国际上常用的个人智力测验主要有两种:斯坦福-比奈智力量表和韦克斯勒智力量表。现在常用测验包括:比奈-西蒙智力量表、韦克斯勒智力量表、斯坦福一比奈智力量表、瑞文标准智力测验、军队甲种
- 深入理解信息检索之BM25算法
Lunar*
算法与优化自然语言处理人工智能
1.BM25算法简介BM25算法,全称为"BestMatching25",是由StephenRobertson和KarenSpärckJones在1990年代初基于早期的概率排名模型(如二元独立检索模型)发展而来。它通过一种概率论的方法来衡量文档与用户查询之间的相关性。2.BM25的核心原理BM25算法的核心在于两个主要的概念:逆文档频率(IDF)和词频(TF)调整。逆文档频率(IDF):IDF用
- 23章11节:自助抽样及其在R语言中的实现与验证
DAT|R科学与人工智能
用R探索医药数据科学r语言开发语言r-4.2.1microsoft信息可视化
在统计学中,数据分析的核心任务之一是如何在样本数据的基础上推断总体的性质。传统方法往往依赖于已知的概率分布假设和解析推导,但在现实问题中,我们往往无法准确得知总体分布,或者数据样本量较小,难以满足经典统计推断方法的要求。自助抽样作为一种非参数的计算方法,为我们提供了基于样本数据“自我重复”构建抽样分布的途径。1977年,斯坦福大学的B.Efron在著名论文《BootstrapMethods:Ano
- ANOVA:在Python中构建和理解ANOVA(方差分析)
python收藏家
python数据科学python
ANOVA(方差分析)是一种统计技术,用于确定三个或更多独立(不相关)组的平均值之间是否存在任何统计学显著差异。它有助于检验关于组间均值差异的假设,在比较多个组时特别有用。在Python中,可以使用scipy.stats模块中的f_oneway函数来执行单因素方差分析(one-wayANOVA),或者使用statsmodels库中的ANOVA类来进行更复杂的方差分析。重要概念总体均值(Popula
- 【人工智能数学基础】——深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用
猿享天开
人工智能数学基础专讲分类数据挖掘人工智能贝叶斯数学
深入详解贝叶斯理论:掌握贝叶斯定理及其在分类和预测中的应用贝叶斯理论(BayesianTheory)是概率论和统计学中的一个重要分支,它以托马斯·贝叶斯(ThomasBayes)命名,主要关注如何根据新的证据更新对某一事件的信念。贝叶斯定理作为贝叶斯理论的核心,在机器学习、数据分析、决策科学等多个领域中具有广泛的应用。本文将深入探讨贝叶斯定理的理论基础、数学表达及其在分类和预测中的应用,辅以实例和
- R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)
sdgfbhgfj
R语言初见机器学习数据挖掘人工智能数据分析r语言
R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)目录R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)R语言是解决什么问题的?R语言将向量数据按照行方式转化为矩阵数据(设置参数byrow为TRUE)安利一个R语言的优秀博主及其CSDN专栏:R语言是解决什么问题的?R是一个有着统计分析功能及强大作图功能的软件系统,是由奥克兰大学统计学系的RossIhak
- 概率论与数理统计
ZhuBin365
人工智能概率论自动化人工智能机器学习深度学习
概率论部分1.随机事件与概率样本空间与随机事件:样本空间是随机试验所有可能结果的集合,通常用Ω表示。随机事件是样本空间的子集,表示随机试验的某些可能结果的集合。概率的公理化定义:概率是定义在事件集合上的函数P,满足三条公理:①非负性:P(A)≥0;②规范性:P(Ω)=1;③可列可加性:若事件A₁,A₂,...互不相容,则P(A₁∪A₂∪...)=P(A₁)+P(A₂)+...条件概率与全概率公式:
- Spike Neural Network Introduction and Research Directions
Debug_Snail
SNNNeuralnetwork人工智能AIGC
1.SNNs是一类神经网络,其中的神经元通过脉冲(spikes)来传递信息,而不是像传统的人工神经网络中那样使用实数值激活。SNNs更接近生物学上的神经系统,因为生物神经元也是通过电信号脉冲来传递信息的。与传统神经网络相比,SNNs具有以下几个特点:更低的功耗-因为只在发生脉冲时才激活神经元,所以整体功耗会比传统神经网络低很多。这使得SNNs很适合应用在对功耗要求非常严格的场景,如边缘计算。时序编
- 机器学习数学基础:29.t检验
@心都
机器学习人工智能
一、t检验的定义与核心思想(一)定义t检验(Student’st-test)是一种在统计学领域中广泛应用的基于t分布的统计推断方法。其主要用途在于判断样本均值与总体均值之间,或者两个独立样本的均值之间、配对样本的均值之间是否存在显著差异。例如,在教育研究中,可以通过t检验判断某个班级学生的平均成绩与全校学生的平均成绩是否有显著差异;在医学实验里,可用于比较实验组和对照组的患者某项生理指标的均值是否
- CAS:1178931-50-4,GalNAz-1-P,N-azidoacetylgalactosamine tetraacylated 1-phosphate
陕西星贝爱科
GalNAz-1-P1178931-50-4
GalNAz-1-P是一种化合物,通常用于糖基化生物学研究中。以下是关于它的详细介绍:基本信息中文名称:GalNAz-1-P,N-azidoacetylgalactosaminetetraacylated1-phosphate英文名称:GalNAz-1-P,N-azidoacetylgalactosaminetetraacylated1-phosphateCAS号:1178931-50-4化学结构
- 深度学习和机器学习的差异
The god of big data
教程深度学习机器学习人工智能
一、技术架构的本质差异传统机器学习(MachineLearning)建立在统计学和数学优化基础之上,其核心技术是通过人工设计的特征工程(FeatureEngineering)构建模型。以支持向量机(SVM)为例,算法通过核函数将数据映射到高维空间,但特征提取完全依赖工程师的领域知识。这种"人工特征+浅层模型"的结构在面对复杂非线性关系时容易遭遇性能瓶颈。深度学习(DeepLearning)作为机器
- 支持向量机 SVM 简要介绍
_夜空的繁星_
机器学习svm支持向量机拉格朗日对偶机器学习
那些我从来没有理解过的概念(1)下面是我在学习过程中遇到的对我很难理解的概念和我抄下来的笔记主要资料来源:《统计学习方法》,维基百科拉格朗日对偶问题是什么假设f(x),ci(x),hj(x)是定义在Rn上的连续可微函数,考虑以下最优化问题:$$\min_{x\inR^n}{f(x)}\c_i(x)\leq0,i=1,2,\dots,k\h_j(x)=0,j=1,2,\dots,l$$是一个凸优化问
- PyTorch 学习路线
gorgor在码农
#python入门基础pythonpytorch
学习PyTorch需要结合理论理解和实践编码,逐步掌握其核心功能和实际应用。以下是分阶段的学习路径和资源推荐,适合从入门到进阶:1.基础知识准备前提条件Python基础:熟悉Python语法(变量、函数、类、模块等)。数学基础:了解线性代数、微积分、概率论(深度学习的基础)。机器学习基础:理解神经网络、损失函数、优化器(如梯度下降)等概念。学习资源Python入门:Python官方教程机器学习基础
- 【练习】PAT 乙 1061 判断题
柠石榴
PAT题解输入输出算法c++
题目判断题的评判很简单,本题就要求你写个简单的程序帮助老师判题并统计学生们判断题的得分。输入格式:输入在第一行给出两个不超过100的正整数N和M,分别是学生人数和判断题数量。第二行给出M个不超过5的正整数,是每道题的满分值。第三行给出每道题对应的正确答案,0代表“非”,1代表“是”。随后N行,每行给出一个学生的解答。数字间均以空格分隔。输出格式:按照输入的顺序输出每个学生的得分,每个分数占一行。输
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag