ATAC-seq技术原理简介

ATAC-seq

ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) is a technique used in molecular biology to assess genome-wide chromatin accessibility.[1] In 2013, the technique was first described as an alternative advanced method for MNase-seq, FAIRE-Seq and DNase-Seq.[1] ATAC-seq is a faster and more sensitive analysis of the epigenome than DNase-seq or MNase-seq.[2][3][4]

ATAC-seq(使用测序法测定转座酶可及性染色质技术)是一种在分子生物学中用于评估全基因组染色质可及性的技术。 2013年,该技术首次被认为可以作为MNase-seq,FAIRE-Seq和DNase-Seq技术替代方案的更加高级方法。在表观基因组分析中,ATAC-seq比DNase-seq或MNase-seq更快
、更灵敏。

Contents

  • 1Description
  • 2Applications
  • 3Single-cell ATAC-seq
  • 4References
  • 5External source

Description[edit]

ATAC-seq identifies accessible DNA regions by probing open chromatin with hyperactive mutant Tn5 Transposase that inserts sequencing adapters into open regions of the genome. [2][5] While naturally occurring transposases have a low level of activity, ATAC-seq employs the mutated hyperactive transposase.[6] In a process called “tagmentation”, Tn5 transposase cleaves and tags double-stranded DNA with sequencing adaptors.[7][8] The tagged DNA fragments are then purified, PCR-amplified, and sequenced using next-generation sequencing.[8] Sequencing reads can then be used to infer regions of increased accessibility as well as to map regions of transcription factor binding sites and nucleosome positions.[2] The number of reads for a region correlate with how open that chromatin is, at single nucleotide resolution.[2] ATAC-seq requires no sonication or phenol-chloroform extraction like FAIRE-seq;[9] no antibodies like ChIP-seq;[10] and no sensitive enzymatic digestion like MNase-seq or DNase-seq.[11] ATAC-seq preparation can be completed in under three hours.[12]

ATAC-seq通过高度活跃的 Tn5转座酶突变体来分析“开放的”(解聚)的DNA染色质区域,该转座酶突变体将测序接头(adapters)插入基因组的"开放区域"(染色体解螺旋、解聚区域)。天然存在的转座酶活性水平较低,但ATAC-seq技术中使用了高活性的酶突变体,以提高效率。在“标签化”(“tagmentation”)的过程中,Tn5转座酶切割双链DNA并用测序接头来标记DNA片段。之后,经标记的DNA片段经历纯化、PCR扩增过程,并使用高通量测序技术进行测序。然后,测序读长(read)可用于推断可及性增加的染色质(基因组)区域,以及定位转录因子结合位点和核小体基因组位置。在单个核苷酸分辨率下,测序得到的read数目与该染色质的”开放“(解聚)程度有关。 ATAC-seq技术不需要对DNA进行超声处理或苯酚-氯仿提取(FAIRE-seq);不需要抗体(ChIP-seq),也不需要敏感酶消化过程(MNase-seq或DNase-seq)。 ATAC-seq实验准备工作可以在三个小时内完成。

Applications[edit]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-mmlSTpPK-1618038160723)(https://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/ATAC-Seq_application_v2.pdf/page1-220px-ATAC-Seq_application_v2.pdf.jpg)]

Applications of ATAC-Seq

ATAC-Seq analysis is used to investigate a number of chromatin-accessibility signatures. The most common use is nucleosome mapping experiments,[3] but it can be applied to mapping transcription factor binding sites,[13] adapted to map DNA methylation sites,[14] or combined with sequencing techniques.[15]

ATAC-Seq可用于研究许多染色质的可及性特征(解聚、解螺旋后的状态)。最常见的用途是核小体mapping实验(基因组定位),它也可用于转录因子结合位点定位、DNA甲基化位点定位,或与测序技术结合来揭示其他更多基因组特征。

The utility of high-resolution enhancer mapping ranges from studying the evolutionary divergence of enhancer usage (e.g. between chimps and humans) during development[16] and uncovering a lineage-specific enhancer map used during blood cell differentiation.[17]

高分辨率增强子作图(mapping)的用途包括研究发育过程中(例如黑猩猩和人类之间)增强子功能发挥的进化差异以及揭示血细胞分化过程中谱系特异性的增强子图谱。

ATAC-Seq has also been applied to defining the genome-wide chromatin accessibility landscape in human cancers,[18] and revealing an overall decrease in chromatin accessibility in macular degeneration.[19] Computational footprinting methods can be performed on ATAC-seq to find cell specific binding sites and transcription factors with cell specific activity.[13]

ATAC-Seq也已用于确定人类癌症中全基因组的染色质可及性蓝图(landscape),并揭示了黄斑变性中染色质可及性的总体下降。可以将计算足迹法(Computational footprinting methods)应用在ATAC-seq技术上,以揭示细胞特异性活动过程中涉及的特异性结合位点和转录因子。

Single-cell ATAC-seq[edit]

Modifications to the ATAC-seq protocol have been made to accommodate single-cell analysis. Microfluidics can be used to separate single nuclei and perform ATAC-seq reactions individually.[12] With this approach, single cells are captured by either a microfluidic device or a liquid deposition system before tagmentation.[12][20] An alternative technique that does not require single cell isolation is combinatorial cellular indexing.[21] This technique uses barcoding to measure chromatin accessibility in thousands of individual cells; it can generate epigenomic profiles from 10,000-100,000 cells per experiment.[22] But combinatorial cellular indexing requires additional, custom-engineered equipment or a large quantity of custom, modified Tn5.[23] Recently, a pooled barcode method called sci-CAR was developed, allowing joint profiling of chromating accessibility and gene expression of single cells.[24]

对ATAC-seq实验技术的修订,使其可应用于单细胞层面的分析。微流控技术技术可用于分离单个细胞核并对单个细胞核进行ATAC-seq。通过这种分离方法,在对开放DNA进行标记之前,可通过微流控装置或液体沉积系统捕获单个细胞。另外一项不需要进行单细胞分离的技术是组合细胞索引(index)。该技术使用条形码来测量数千个单个细胞中的染色质可及性。 每个实验可产生10,000-100,000个细胞的表观基因组图谱。但是组合式细胞索引需要额外定制化的设备或大量定制的改良转座酶Tn5。最近,开发了一种合并条形码方法的sci-CAR技术,该方法可对染色质可及性和单个细胞的基因表达进行联合分析。

Computational analysis of scATAC-seq is based on construction of a count matrix with number of reads per open chromatin regions. Open chromatin regions can be defined, for example, by standard peak calling of pseudo bulk ATAC-seq data. Further steps include data reduction with PCA and clustering of cells.[20] scATAC-seq matrices can be extremely large (hundreds of thousands of regions) and is extremely sparse, i.e. less than 3% of entries are non-zero.[25] Therefore, imputation of count matrix is another crucial step. As with bulk ATAC-seq, scATAC-seq allows finding regulators like transcription factors controlling gene expression of cells. This can be achieved by looking at the number of reads around TF motifs[26] or footprinting analysis.[25]

scATAC-seq的结果数据分析是基于每个开放染色质区域具有的读长数(reads)的计数矩阵的构建。 可以通过伪峰ATAC-seq数据的标准峰的调用来定义开放的染色质区域。 进一步的分析步骤包括使用PCA进行数据降维和细胞聚类。scATAC-seq矩阵可能非常大(成千上万个区域),并且非常稀疏,即少于3%的条目为非零。因此,计数矩阵的插值是另一个关键步骤。 与批量ATAC-seq一样,scATAC-seq可以找到调控因子,例如控制细胞基因表达的转录因子。 这可以通过查看围绕TF基序的读长数目或足迹分析来实现。

reference:
[1] https://en.wikipedia.org/wiki/ATAC-seq

你可能感兴趣的:(ATAC-seq技术原理简介)