L09_卷积神经网络之手写数字识别

卷积神经网络之手写数字识别

0.导入包

import torch
from torchvision import transforms,datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

1.准备数据集

batch_size = 64
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,),(0.3081,))])

train_dataset = datasets.MNIST(root='./data/',train=True,download=True, transform=transform)
train_loader = DataLoader(train_dataset,shuffle=True,batch_size=batch_size)

test_dataset = datasets.MNIST(root='./data/',train=False,download=True, transform=transform)
test_loader = DataLoader(train_dataset,shuffle=False,batch_size=batch_size)

2.设计模型

class Net(torch.nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
    
    def forward(self, x):
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)
        x = self.fc(x)
        return x
        
        
model = Net()

3.构造损失和优化器

criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

4.训练

def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
        
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print(f'epoch:{epoch+1},batch_idx:{batch_idx+1},loss:{running_loss/(batch_idx+1):.3f}')

5.测试

def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
        print(f'正确率:{100*correct/total}%')

6.执行

if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
epoch:1,batch_idx:300,loss:0.716
epoch:1,batch_idx:600,loss:0.887
epoch:1,batch_idx:900,loss:1.019
正确率:96.68166666666667%
epoch:2,batch_idx:300,loss:0.102
epoch:2,batch_idx:600,loss:0.191
epoch:2,batch_idx:900,loss:0.284
正确率:97.77333333333333%
epoch:3,batch_idx:300,loss:0.077
epoch:3,batch_idx:600,loss:0.151
epoch:3,batch_idx:900,loss:0.218
正确率:97.92833333333333%
epoch:4,batch_idx:300,loss:0.063
epoch:4,batch_idx:600,loss:0.120
epoch:4,batch_idx:900,loss:0.183
正确率:98.37166666666667%
epoch:5,batch_idx:300,loss:0.056
epoch:5,batch_idx:600,loss:0.109
epoch:5,batch_idx:900,loss:0.159
正确率:98.62833333333333%
epoch:6,batch_idx:300,loss:0.051
epoch:6,batch_idx:600,loss:0.097
epoch:6,batch_idx:900,loss:0.144
正确率:98.66666666666667%
epoch:7,batch_idx:300,loss:0.042
epoch:7,batch_idx:600,loss:0.086
epoch:7,batch_idx:900,loss:0.131
正确率:98.725%
epoch:8,batch_idx:300,loss:0.040
epoch:8,batch_idx:600,loss:0.079
epoch:8,batch_idx:900,loss:0.122
正确率:98.97166666666666%
epoch:9,batch_idx:300,loss:0.036
epoch:9,batch_idx:600,loss:0.077
epoch:9,batch_idx:900,loss:0.113
正确率:98.78833333333333%
epoch:10,batch_idx:300,loss:0.038
epoch:10,batch_idx:600,loss:0.070
epoch:10,batch_idx:900,loss:0.106
正确率:99.10166666666667%

你可能感兴趣的:(研究生之深度学习,cnn,深度学习,pytorch)