基于Mediapipe+Opencv实现手势检测

基于Mediapipe+Opencv实现手势检测

文章目录

  • 基于Mediapipe+Opencv实现手势检测
    • 一、前言
    • 二、环境配置
      • 软件:
      • 环境:
    • 三、全部源码
      • MediapipeHandTracking.py程序结构:
      • MediapipeHandTracking.py源码与注释
    • 四、环境配置
      • 1、在Anaconda3上新建环境Gesture
      • 2、激活Gesture环境并下载opencv-python包
      • 3、下载mediapipe包
      • 4、打开Pycharm完成环境导入项目
    • 五、运行程序:
    • 六、程序应用扩展
      • 1、手部的关键点的位置和次序我们全部已知的特点
      • 2、和其他AL结合
      • 3、全身检测源码

一、前言

想实现一下姿态识别的时候,感觉手势识别也蛮重要的就过来顺便实现一下。

下面是一些国内的pip源,有需要可自取

阿里云 http://mirrors.aliyun.com/pypi/simple/

中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/

豆瓣(douban) http://pypi.douban.com/simple/

清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/

中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/

二、环境配置

软件:

ANACONDA3+Pycharm2019

环境:

  1. opencv-python>=4.5.5
  2. mediapipe>=0.8.9.1

注:一定关掉科学上网

三、全部源码

比较短小且只有一个源文件MediapipeHandTracking.py我就直接在这里贴了

MediapipeHandTracking.py程序结构:

  • 第一步:保存mediapipe中的手势识别解决方案到mpHands,hands,mpDraw中
  • 第二步:参数设定
  • 第三步:循环读取视频流到img,img输入hands.hands函数得到结果,绘制结果到img并输出

MediapipeHandTracking.py源码与注释

import cv2
import mediapipe as mp
import time


#第一步:保存mediapipe中的手势识别解决方案到mpHands,hands,mpDraw中
mpHands = mp.solutions.hands #以下三个是mediapipe 中的API调用模板了
hands = mpHands.Hands(min_detection_confidence=0.5, min_tracking_confidence=0.5)#最小检测置信度,最小追踪置信度
mpDraw = mp.solutions.drawing_utils                              #获取mediapipe解决方案的绘画工具包

#第二步:参数设定
handLmsStyle = mpDraw.DrawingSpec(color=(0, 0, 255), thickness=3)#绘制手部关键点的颜色与粗细
handConStyle = mpDraw.DrawingSpec(color=(0, 255, 0), thickness=5)#绘制手部线条的颜色与粗细
pTime = 0 #和下面的cTime一起用于计算视频输入流FPS
cTime = 0

cap = cv2.VideoCapture(0) #打开编号为0的摄像头,这个一般是自带摄像头

#第三步:循环读取视频流到img,img输入hands.hands函数得到结果,绘制结果到img并输出
while True:
    ret, img = cap.read()       #从cap中读取图片到img,并将读取是否成功的结果保存在ret
    if ret:
        imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  #模型训练的时候是使用RGB训练,对于这个类型识别精度和速度比较高
        result = hands.process(imgRGB)                 #将RGB图片输入手部模型将结果保存在result

        # print(result.multi_hand_landmarks)           #打印result.multi_hand_landmarks内容,可以去掉试一下
        imgHeight = img.shape[0]       #获取摄像机图片的高
        imgWidth = img.shape[1]        #获取摄像机图片的宽

        if result.multi_hand_landmarks:#如果multi_hand_landmarks不为空进入循环
            for handLms in result.multi_hand_landmarks:  #遍历multi_hand_landmarks内每一个hand_landmark(手部关键点),相对于遍历图片中每一个手
                mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS, handLmsStyle, handConStyle) #调用mediapipe内绘画工具包绘画手部关键点

                for i, lm in enumerate(handLms.landmark):  #i保存第几个手部关键点,lm保存该点在图中的归一化值
                    xPos = int(lm.x * imgWidth) #第i个关键点x
                    yPos = int(lm.y * imgHeight)#第i个关键点y
                    cv2.putText(img, str(i), (xPos-25, yPos+5), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0, 0, 255), 2)#绘制关键点在,关键点左边靠下一点

                    if i == 8:#当画到第八个关键点时
                         cv2.circle(img, (xPos, yPos), 10, (166, 0, 0), cv2.FILLED)#画一个圆
                         #print(i, xPos, yPos)   #打印绘制这个点时候的坐标

        cTime = time.time()
        fps = 1/(cTime-pTime)
        pTime = cTime
        cv2.putText(img, f"FPS : {int(fps)}", (30, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 3) #绘制FSP到图中

        cv2.imshow('img', img) #输出图片

    if cv2.waitKey(1) == ord('q'):#点击视频,输入q退出
        break

四、环境配置

1、在Anaconda3上新建环境Gesture

打开Anaconda Prompt,输入:

conda create -n Gesture python=3.8

2、激活Gesture环境并下载opencv-python包

激活环境:conda activate Gesture
下载opencv-python包:pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple/
基于Mediapipe+Opencv实现手势检测_第1张图片

3、下载mediapipe包

pip install mediapipe -i https://pypi.tuna.tsinghua.edu.cn/simple/

基于Mediapipe+Opencv实现手势检测_第2张图片

4、打开Pycharm完成环境导入项目

配置代码运行环境
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
基于Mediapipe+Opencv实现手势检测_第3张图片

五、运行程序:

用Pycharm打开包含hanTracking.py程序的文件夹,并运行
基于Mediapipe+Opencv实现手势检测_第4张图片
运行结果
基于Mediapipe+Opencv实现手势检测_第5张图片

六、程序应用扩展

1、手部的关键点的位置和次序我们全部已知的特点

基于Mediapipe+Opencv实现手势检测_第6张图片
该功能可用于图片ROI提取截取出图片,然后进行其他一些图片操作。
该功能可用于手势响应事件。比如约定,食指和大拇指也就是4号和8号触碰时候触发某事件
,等等。
实现AL+操作

基于Mediapipe+Opencv实现手势检测_第7张图片

2、和其他AL结合

比如姿态检测AL,能将人识别成一个火柴人,开发空间有不少用处。

3、全身检测源码

import cv2
import time
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_holistic = mp.solutions.holistic

holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)
handLmsStyle = mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=0)#绘制手部关键点的颜色与粗细
handConStyle = mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=4)#绘制手部线条的颜色与粗细

cap = cv2.VideoCapture(0)
while True:
    ret,image=cap.read()
    if ret:
        image = cv2.flip(image, 1)
        image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
        results = holistic.process(image)

        if results.pose_landmarks:
            mp_drawing.draw_landmarks(image, results.face_landmarks, mp_holistic.FACEMESH_CONTOURS,handLmsStyle,handConStyle)
            mp_drawing.draw_landmarks(image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS)
            mp_drawing.draw_landmarks(image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS)
            mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS)

        cv2.imshow("img",image)
        if cv2.waitKey(1)==ord("q"):
            break
holistic.close()

运行效果如下:
晒晒我帅气的舍友
基于Mediapipe+Opencv实现手势检测_第8张图片

你可能感兴趣的:(oepncv,python实践,机器视觉,opencv,计算机视觉,python)