全文下载链接:http://tecdat.cn/?p=17748
最近我们被客户要求撰写关于销售量时间序列建模预测的研究报告,包括一些图形和统计输出。
在本文中,在数据科学学习之旅中,我经常处理日常工作中的时间序列数据集,并据此做出预测 。
LSTM神经网络架构和原理及其在Python中的预测应用
我将通过以下步骤:
探索性数据分析(EDA)
- 问题定义(我们要解决什么)
- 变量识别(我们拥有什么数据)
- 单变量分析(了解数据集中的每个字段)
- 多元分析(了解不同领域和目标之间的相互作用)
- 缺失值处理
- 离群值处理
- 变量转换
预测建模
- LSTM
- XGBoost
问题定义
我们在两个不同的表中提供了商店的以下信息:
- 商店:每个商店的ID
- 销售:特定日期的营业额(我们的目标变量)
- 客户:特定日期的客户数量
- StateHoliday:假日
- SchoolHoliday:学校假期
- StoreType:4个不同的商店:a,b,c,d
- CompetitionDistance:到最近的竞争对手商店的距离(以米为单位)
- CompetitionOpenSince [月/年]:提供最近的竞争对手开放的大致年份和月份
- 促销:当天促销与否
- Promo2:Promo2是某些商店的连续和连续促销:0 =商店不参与,1 =商店正在参与
- PromoInterval:描述促销启动的连续区间,并指定重新开始促销的月份。
利用所有这些信息,我们预测未来6周的销售量。
# 让我们导入EDA所需的库:
import numpy as np # 线性代数
import pandas as pd # 数据处理,CSV文件I / O导入(例如pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
plt.style.use("ggplot") # 绘图
#导入训练和测试文件:
train_df = pd.read_csv("../Data/train.csv")
test_df = pd.read_csv("../Data/test.csv")
#文件中有多少数据:
print("在训练集中,我们有", train_df.shape[0], "个观察值和", train_df.shape[1], 列/变量。")
print("在测试集中,我们有", test_df.shape[0], "个观察值和", test_df.shape[1], "列/变量。")
print("在商店集中,我们有", store_df.shape[0], "个观察值和", store_df.shape[1], "列/变量。")
在训练集中,我们有1017209个观察值和9列/变量。
在测试集中,我们有41088个观测值和8列/变量。
在商店集中,我们有1115个观察值和10列/变量。
首先让我们清理 训练数据集。
#查看数据
train_df.head().append(train_df.tail()) #显示前5行。
train_df.isnull().all()
Out[5]:
Store False
DayOfWeek False
Date False
Sales False
Customers False
Open False
Promo False
StateHoliday False
SchoolHoliday False
dtype: bool
让我们从第一个变量开始-> 销售量
opened_sales = (train_df[(train_df.Open == 1) #如果商店开业
opened_sales.Sales.describe()
Out[6]:
count 422307.000000
mean 6951.782199
std 3101.768685
min 133.000000
25% 4853.000000
50% 6367.000000
75% 8355.000000
max 41551.000000
Name: Sales, dtype: float64
看一下顾客变量
In [9]:
train_df.Customers.describe()
Out[9]:
count 1.017209e+06
mean 6.331459e+02
std 4.644117e+02
min 0.000000e+00
25% 4.050000e+02
50% 6.090000e+02
75% 8.370000e+02
max 7.388000e+03
Name: Customers, dtype: float64
train_df[(train_df.Customers > 6000)]
我们看一下**假期** 变量。
train_df.StateHoliday.value_counts()
0 855087
0 131072
a 20260
b 6690
c 4100
Name: StateHoliday, dtype: int64
train_df.StateHoliday_cat.count()
1017209
train_df.tail()
train_df.isnull().all() #检查缺失
Out[18]:
Store False
DayOfWeek False
Date False
Sales False
Customers False
Open False
Promo False
SchoolHoliday False
StateHoliday_cat False
dtype: bool
让我们继续进行商店分析
store_df.head().append(store_df.tail())
#缺失数据:
Store 0.000000
StoreType 0.000000
Assortment 0.000000
CompetitionDistance 0.269058
CompetitionOpenSinceMonth 31.748879
CompetitionOpenSinceYear 31.748879
Promo2 0.000000
Promo2SinceWeek 48.789238
Promo2SinceYear 48.789238
PromoInterval 48.789238
dtype: float64
In [21]:
让我们从缺失的数据开始。第一个是 CompetitionDistance
store_df.CompetitionDistance.plot.box()
让我看看异常值,因此我们可以在均值和中位数之间进行选择来填充NaN
点击标题查阅往期内容
Python中利用长短期记忆模型LSTM进行时间序列预测分析 - 预测电力负荷数据
左右滑动查看更多
01
02
03
04
缺少数据,因为商店没有竞争。 因此,我建议用零填充缺失的值。
store_df["CompetitionOpenSinceMonth"].fillna(0, inplace = True)
让我们看一下促销活动。
store_df.groupby(by = "Promo2", axis = 0).count()
如果未进行促销,则应将“促销”中的NaN替换为零
我们合并商店数据和训练集数据,然后继续进行分析。
第一,让我们按销售量、客户等比较商店。
f, ax = plt.subplots(2, 3, figsize = (20,10))
plt.subplots_adjust(hspace = 0.3)
plt.show()
从图中可以看出,StoreType A拥有最多的商店,销售和客户。但是,StoreType D的平均每位客户平均支出最高。只有17家商店的StoreType B拥有最多的平均顾客。
我们逐年查看趋势。
sns.factorplot(data = train_store_df,
# 我们可以看到季节性,但看不到趋势。 该销售额每年保持不变
我们看一下相关图。
"CompetitionOpenSinceMonth", "CompetitionOpenSinceYear", "Promo2
我们可以得到相关性:
- 客户与销售(0.82)
- 促销与销售(0,82)
- 平均顾客销量 vs促销(0,28)
- 商店类别 vs 平均顾客销量 (0,44)
我的分析结论:
- 商店类别 A拥有最多的销售和顾客。
- 商店类别 B的每位客户平均销售额最低。因此,我认为客户只为小商品而来。
- 商店类别 D的购物车数量最多。
- 促销仅在工作日进行。
- 客户倾向于在星期一(促销)和星期日(没有促销)购买更多商品。
- 我看不到任何年度趋势。仅季节性模式。
点击文末 “阅读原文”
获取全文完整代码数据资料。
本文选自《Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析》。
点击标题查阅往期内容
Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类
RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测
结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析
深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据
用PyTorch机器学习神经网络分类预测银行客户流失模型
PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据
Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化
Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
R语言深度学习:用keras神经网络回归模型预测时间序列数据
Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类
R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)
MATLAB中用BP神经网络预测人体脂肪百分比数据
Python中用PyTorch机器学习神经网络分类预测银行客户流失模型
R语言实现CNN(卷积神经网络)模型进行回归数据分析
SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型
【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析
Python使用神经网络进行简单文本分类
R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析
R语言基于递归神经网络RNN的温度时间序列预测
R语言神经网络模型预测车辆数量时间序列
R语言中的BP神经网络模型分析学生成绩
matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类
R语言实现拟合神经网络预测和结果可视化
用R语言实现神经网络预测股票实例
使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测
python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译
用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类