LIO-SAM探秘第三章之代码解析(五) --- imuPreintegration.cpp

本文阅读的代码为2020年11月1日下载的github的最新master。
如果代码后续更新了请以github为准。

1 main()

int main(int argc, char** argv)
{
    ros::init(argc, argv, "roboat_loam");
    
    IMUPreintegration ImuP;

    TransformFusion TF;

    ROS_INFO("\033[1;32m----> IMU Preintegration Started.\033[0m");
    
    ros::MultiThreadedSpinner spinner(4);
    spinner.spin();
    
    return 0;
}

2 IMUPreintegration类

2.1 成员变量

class IMUPreintegration : public ParamServer
{
public:
    std::mutex mtx;

    ros::Subscriber subImu;
    ros::Subscriber subOdometry;
    ros::Publisher pubImuOdometry;

    bool systemInitialized = false;

    gtsam::noiseModel::Diagonal::shared_ptr priorPoseNoise;
    gtsam::noiseModel::Diagonal::shared_ptr priorVelNoise;
    gtsam::noiseModel::Diagonal::shared_ptr priorBiasNoise;
    gtsam::noiseModel::Diagonal::shared_ptr correctionNoise;
    gtsam::noiseModel::Diagonal::shared_ptr correctionNoise2;
    gtsam::Vector noiseModelBetweenBias;

    gtsam::PreintegratedImuMeasurements *imuIntegratorOpt_;
    gtsam::PreintegratedImuMeasurements *imuIntegratorImu_;

    std::deque<sensor_msgs::Imu> imuQueOpt;
    std::deque<sensor_msgs::Imu> imuQueImu;

    gtsam::Pose3 prevPose_;
    gtsam::Vector3 prevVel_;
    gtsam::NavState prevState_;
    gtsam::imuBias::ConstantBias prevBias_;

    gtsam::NavState prevStateOdom;
    gtsam::imuBias::ConstantBias prevBiasOdom;

    bool doneFirstOpt = false;
    double lastImuT_imu = -1;
    double lastImuT_opt = -1;

    gtsam::ISAM2 optimizer;
    gtsam::NonlinearFactorGraph graphFactors;
    gtsam::Values graphValues;

    const double delta_t = 0;

    int key = 1;

    gtsam::Pose3 imu2Lidar = gtsam::Pose3(gtsam::Rot3(1, 0, 0, 0), gtsam::Point3(-extTrans.x(), -extTrans.y(), -extTrans.z()));
    gtsam::Pose3 lidar2Imu = gtsam::Pose3(gtsam::Rot3(1, 0, 0, 0), gtsam::Point3(extTrans.x(), extTrans.y(), extTrans.z()));
};

2.2 构造函数

    IMUPreintegration()
    {
        // imuTopic 为 imu_correct, imu原始数据
        subImu = nh.subscribe<sensor_msgs::Imu>(imuTopic, 2000, &IMUPreintegration::imuHandler, this, ros::TransportHints().tcpNoDelay());
        // lio_sam/mapping/odometry_incremental 是mapOptmization发出的
        subOdometry = nh.subscribe<nav_msgs::Odometry>("lio_sam/mapping/odometry_incremental", 5, &IMUPreintegration::odometryHandler, this, ros::TransportHints().tcpNoDelay());

        // 发布 odometry/imu_incremental
        pubImuOdometry = nh.advertise<nav_msgs::Odometry>(odomTopic + "_incremental", 2000);

        // 下面是预积分使用到的gtsam的一些参数配置
        boost::shared_ptr<gtsam::PreintegrationParams> p = gtsam::PreintegrationParams::MakeSharedU(imuGravity);
        p->accelerometerCovariance = gtsam::Matrix33::Identity(3, 3) * pow(imuAccNoise, 2); // acc white noise in continuous
        p->gyroscopeCovariance = gtsam::Matrix33::Identity(3, 3) * pow(imuGyrNoise, 2);     // gyro white noise in continuous
        p->integrationCovariance = gtsam::Matrix33::Identity(3, 3) * pow(1e-4, 2);          // error committed in integrating position from velocities
        gtsam::imuBias::ConstantBias prior_imu_bias((gtsam::Vector(6) << 0, 0, 0, 0, 0, 0).finished());
        ; // assume zero initial bias

        priorPoseNoise = gtsam::noiseModel::Diagonal::Sigmas((gtsam::Vector(6) << 1e-2, 1e-2, 1e-2, 1e-2, 1e-2, 1e-2).finished()); // rad,rad,rad,m, m, m
        priorVelNoise = gtsam::noiseModel::Isotropic::Sigma(3, 1e4);                                                               // m/s
        priorBiasNoise = gtsam::noiseModel::Isotropic::Sigma(6, 1e-3);                                                             // 1e-2 ~ 1e-3 seems to be good
        correctionNoise = gtsam::noiseModel::Diagonal::Sigmas((gtsam::Vector(6) << 0.05, 0.05, 0.05, 0.1, 0.1, 0.1).finished());   // rad,rad,rad,m, m, m
        correctionNoise2 = gtsam::noiseModel::Diagonal::Sigmas((gtsam::Vector(6) << 1, 1, 1, 1, 1, 1).finished());                 // rad,rad,rad,m, m, m
        noiseModelBetweenBias = (gtsam::Vector(6) << imuAccBiasN, imuAccBiasN, imuAccBiasN, imuGyrBiasN, imuGyrBiasN, imuGyrBiasN).finished();

        imuIntegratorImu_ = new gtsam::PreintegratedImuMeasurements(p, prior_imu_bias); // setting up the IMU integration for IMU message thread
        imuIntegratorOpt_ = new gtsam::PreintegratedImuMeasurements(p, prior_imu_bias); // setting up the IMU integration for optimization
    }

2.3 resetOptimization()

    // gtsam相关优化参数重置与初始化
    void resetOptimization()
    {
        gtsam::ISAM2Params optParameters;
        optParameters.relinearizeThreshold = 0.1;
        optParameters.relinearizeSkip = 1;
        optimizer = gtsam::ISAM2(optParameters);

        gtsam::NonlinearFactorGraph newGraphFactors;
        graphFactors = newGraphFactors;

        gtsam::Values NewGraphValues;
        graphValues = NewGraphValues;
    }

2.4 resetParams()

    // 对这几个变量进行重置
    void resetParams()
    {
        lastImuT_imu = -1;
        doneFirstOpt = false;
        systemInitialized = false;
    }

2.5 imuHandler()

    // 使用 gtsam 对imu进行预积分,之后对odom进行预测,发布预测后的odometry/imu_incremental
    void imuHandler(const sensor_msgs::Imu::ConstPtr &imu_raw)
    {
        std::lock_guard<std::mutex> lock(mtx);

        // imu数据转换到雷达坐标系下
        sensor_msgs::Imu thisImu = imuConverter(*imu_raw);

        // 两个双端队列分别装着优化前后的imu数据
        imuQueOpt.push_back(thisImu);
        imuQueImu.push_back(thisImu);

        // 执行一次优化之后才会进行后续的预测
        if (doneFirstOpt == false)
            return;

        // 获得imu的时间间隔, 第一次为 1/500,之后是两次imuTime间的差
        double imuTime = ROS_TIME(&thisImu);
        double dt = (lastImuT_imu < 0) ? (1.0 / 500.0) : (imuTime - lastImuT_imu);
        lastImuT_imu = imuTime;

        // 进行预积分 integrate this single imu message
        imuIntegratorImu_->integrateMeasurement(gtsam::Vector3(thisImu.linear_acceleration.x, thisImu.linear_acceleration.y, thisImu.linear_acceleration.z),
                                                gtsam::Vector3(thisImu.angular_velocity.x, thisImu.angular_velocity.y, thisImu.angular_velocity.z),
                                                dt);

        // 根据预计分结果, 预测odom
        gtsam::NavState currentState = imuIntegratorImu_->predict(prevStateOdom, prevBiasOdom);

        // publish odometry 发布预测的odom
        nav_msgs::Odometry odometry;
        odometry.header.stamp = thisImu.header.stamp;
        odometry.header.frame_id = odometryFrame;
        odometry.child_frame_id = "odom_imu";

        // transform imu pose to ldiar
        // 预测值currentState获得imu位姿, 再由imu到雷达变换, 获得雷达位姿 lidarPose
        gtsam::Pose3 imuPose = gtsam::Pose3(currentState.quaternion(), currentState.position());
        gtsam::Pose3 lidarPose = imuPose.compose(imu2Lidar);

        odometry.pose.pose.position.x = lidarPose.translation().x();
        odometry.pose.pose.position.y = lidarPose.translation().y();
        odometry.pose.pose.position.z = lidarPose.translation().z();
        odometry.pose.pose.orientation.x = lidarPose.rotation().toQuaternion().x();
        odometry.pose.pose.orientation.y = lidarPose.rotation().toQuaternion().y();
        odometry.pose.pose.orientation.z = lidarPose.rotation().toQuaternion().z();
        odometry.pose.pose.orientation.w = lidarPose.rotation().toQuaternion().w();

        odometry.twist.twist.linear.x = currentState.velocity().x();
        odometry.twist.twist.linear.y = currentState.velocity().y();
        odometry.twist.twist.linear.z = currentState.velocity().z();
        odometry.twist.twist.angular.x = thisImu.angular_velocity.x + prevBiasOdom.gyroscope().x();
        odometry.twist.twist.angular.y = thisImu.angular_velocity.y + prevBiasOdom.gyroscope().y();
        odometry.twist.twist.angular.z = thisImu.angular_velocity.z + prevBiasOdom.gyroscope().z();
        pubImuOdometry.publish(odometry);
    }

2.6 odometryHandler()

    // 
    void odometryHandler(const nav_msgs::Odometry::ConstPtr &odomMsg)
    {
        std::lock_guard<std::mutex> lock(mtx);
        // 里程计消息的当前时间戳
        double currentCorrectionTime = ROS_TIME(odomMsg);

        // make sure we have imu data to integrate
        if (imuQueOpt.empty())
            return;

        float p_x = odomMsg->pose.pose.position.x;
        float p_y = odomMsg->pose.pose.position.y;
        float p_z = odomMsg->pose.pose.position.z;
        float r_x = odomMsg->pose.pose.orientation.x;
        float r_y = odomMsg->pose.pose.orientation.y;
        float r_z = odomMsg->pose.pose.orientation.z;
        float r_w = odomMsg->pose.pose.orientation.w;
        bool degenerate = (int)odomMsg->pose.covariance[0] == 1 ? true : false;
        // 得到雷达的位姿
        gtsam::Pose3 lidarPose = gtsam::Pose3(gtsam::Rot3::Quaternion(r_w, r_x, r_y, r_z), gtsam::Point3(p_x, p_y, p_z));

        // 0. initialize system
        // 只执行一次, 初始化系统
        if (systemInitialized == false)
        {
            // 优化参数重置
            resetOptimization();

            // pop old IMU message
            // 推出相对较旧的imu消息 保证imu与odometry消息时间同步  因为imu是高频数据所以这是必要的
            // 整个LIO-SAM中作者对时间同步这块的思想都是这样的
            while (!imuQueOpt.empty())
            {
                // delta_t = 0
                if (ROS_TIME(&imuQueOpt.front()) < currentCorrectionTime - delta_t)
                {
                    lastImuT_opt = ROS_TIME(&imuQueOpt.front());
                    imuQueOpt.pop_front();
                }
                else
                    break;
            }

            // initial pose
            // 将激光里程计提供的位姿 转到imu坐标系下
            prevPose_ = lidarPose.compose(lidar2Imu);
            // 一元因子,系统先验 - 添加位姿因子
            gtsam::PriorFactor<gtsam::Pose3> priorPose(X(0), prevPose_, priorPoseNoise);
            graphFactors.add(priorPose);

            // initial velocity - 添加速度因子
            prevVel_ = gtsam::Vector3(0, 0, 0);
            gtsam::PriorFactor<gtsam::Vector3> priorVel(V(0), prevVel_, priorVelNoise);
            graphFactors.add(priorVel);

            // initial bias - 添加偏差因子
            prevBias_ = gtsam::imuBias::ConstantBias();
            gtsam::PriorFactor<gtsam::imuBias::ConstantBias> priorBias(B(0), prevBias_, priorBiasNoise);
            graphFactors.add(priorBias);

            // 除了因子外 还要有节点value
            // add values
            graphValues.insert(X(0), prevPose_);
            graphValues.insert(V(0), prevVel_);
            graphValues.insert(B(0), prevBias_);

            // optimize once 进行一次优化
            optimizer.update(graphFactors, graphValues);
            graphFactors.resize(0);
            graphValues.clear();

            // 积分器重置
            imuIntegratorImu_->resetIntegrationAndSetBias(prevBias_);
            imuIntegratorOpt_->resetIntegrationAndSetBias(prevBias_);

            key = 1;
            systemInitialized = true;
            return;
        }

        // reset graph for speed
        // 如果key达到100 重置整个图 减小计算压力 加快速度
        // 保存最后的噪声值
        if (key == 100)
        {
            // get updated noise before reset
            gtsam::noiseModel::Gaussian::shared_ptr updatedPoseNoise = gtsam::noiseModel::Gaussian::Covariance(optimizer.marginalCovariance(X(key - 1)));
            gtsam::noiseModel::Gaussian::shared_ptr updatedVelNoise = gtsam::noiseModel::Gaussian::Covariance(optimizer.marginalCovariance(V(key - 1)));
            gtsam::noiseModel::Gaussian::shared_ptr updatedBiasNoise = gtsam::noiseModel::Gaussian::Covariance(optimizer.marginalCovariance(B(key - 1)));
            // reset graph
            resetOptimization();

            // 重置之后还有类似与初始化的过程 区别在于噪声值不同
            // add pose 
            gtsam::PriorFactor<gtsam::Pose3> priorPose(X(0), prevPose_, updatedPoseNoise);
            graphFactors.add(priorPose);
            // add velocity
            gtsam::PriorFactor<gtsam::Vector3> priorVel(V(0), prevVel_, updatedVelNoise);
            graphFactors.add(priorVel);
            // add bias
            gtsam::PriorFactor<gtsam::imuBias::ConstantBias> priorBias(B(0), prevBias_, updatedBiasNoise);
            graphFactors.add(priorBias);
            // add values
            graphValues.insert(X(0), prevPose_);
            graphValues.insert(V(0), prevVel_);
            graphValues.insert(B(0), prevBias_);
            // optimize once
            optimizer.update(graphFactors, graphValues);
            graphFactors.resize(0);
            graphValues.clear();

            key = 1;
        }

        // 1. integrate imu data and optimize
        while (!imuQueOpt.empty())
        {
            // pop and integrate imu data that is between two optimizations
            sensor_msgs::Imu *thisImu = &imuQueOpt.front();
            double imuTime = ROS_TIME(thisImu);
            // 对早于当前odom数据的imu数据进行积分,imu为观测值
            if (imuTime < currentCorrectionTime - delta_t) // delta_t = 0
            {
                double dt = (lastImuT_opt < 0) ? (1.0 / 500.0) : (imuTime - lastImuT_opt);
                // 进行预积分得到新的状态值  注意用到的是imu数据的加速度 角速度
                // 作者要求的9轴imu数据中欧拉角在本程序文件中没有任何用到 全在地图优化里用到的
                // 这个integrateMeasurement还不懂 ???
                imuIntegratorOpt_->integrateMeasurement(
                    gtsam::Vector3(thisImu->linear_acceleration.x, thisImu->linear_acceleration.y, thisImu->linear_acceleration.z),
                    gtsam::Vector3(thisImu->angular_velocity.x, thisImu->angular_velocity.y, thisImu->angular_velocity.z),
                    dt);

                // 在推出一次数据前保存上一个数据的时间戳
                lastImuT_opt = imuTime;
                imuQueOpt.pop_front();
            }
            else
                break;
        }

        // 利用两帧之间的IMU数据完成了预积分后 增加imu因子 到因子图中
        // add imu factor to graph
        const gtsam::PreintegratedImuMeasurements &preint_imu =
            dynamic_cast<const gtsam::PreintegratedImuMeasurements &>(*imuIntegratorOpt_);
        gtsam::ImuFactor imu_factor(X(key - 1), V(key - 1), X(key), V(key), B(key - 1), preint_imu);
        graphFactors.add(imu_factor);
        // add imu bias between factor 二元因子,位姿之间,回环之间
        graphFactors.add(gtsam::BetweenFactor<gtsam::imuBias::ConstantBias>(B(key - 1), B(key), gtsam::imuBias::ConstantBias(),
                                                                            gtsam::noiseModel::Diagonal::Sigmas(
                                                                                sqrt(imuIntegratorOpt_->deltaTij()) * noiseModelBetweenBias)));
        // add pose factor
        // 还加入了pose factor 其实对应于作者论文中的因子图结构 就是与imu因子一起的 Lidar odometry factor
        gtsam::Pose3 curPose = lidarPose.compose(lidar2Imu);
        gtsam::PriorFactor<gtsam::Pose3> pose_factor(X(key), curPose, degenerate ? correctionNoise2 : correctionNoise);
        graphFactors.add(pose_factor);

        // insert predicted values
        // 插入预测的值 即因子图中x0 x1 x2 ……节点
        gtsam::NavState propState_ = imuIntegratorOpt_->predict(prevState_, prevBias_);
        graphValues.insert(X(key), propState_.pose());
        graphValues.insert(V(key), propState_.v());
        graphValues.insert(B(key), prevBias_);

        // optimize 进行优化
        optimizer.update(graphFactors, graphValues);
        optimizer.update();

        // 优化完成后重置
        graphFactors.resize(0);
        graphValues.clear();

        // Overwrite the beginning of the preintegration for the next step.
        // 用这次的优化结果重写或者说是覆盖相关初始值 为下一次优化准备
        gtsam::Values result = optimizer.calculateEstimate();
        prevPose_ = result.at<gtsam::Pose3>(X(key));
        prevVel_ = result.at<gtsam::Vector3>(V(key));
        prevState_ = gtsam::NavState(prevPose_, prevVel_);
        prevBias_ = result.at<gtsam::imuBias::ConstantBias>(B(key));

        // Reset the optimization preintegration object.
        imuIntegratorOpt_->resetIntegrationAndSetBias(prevBias_);

        // check optimization
        // 检查是否有失败情况 如有则重置参数
        if (failureDetection(prevVel_, prevBias_))
        {
            resetParams();
            return;
        }

        // 2. after optiization, re-propagate imu odometry preintegration
        /*为了维持实时性imuIntegrateImu就得在每次odom触发优化后立刻获取最新的bias
          同时对imu测量值imuQueImu执行bias改变的状态重传播处理
          这样可以最大限度的保证实时性和准确性。*/
        prevStateOdom = prevState_;
        prevBiasOdom = prevBias_;

        // first pop imu message older than current correction data
        double lastImuQT = -1;
        // 上边的while弹出了imuQueOpt中时间更早的,这里是对imuQueImu中时间更早的进行弹出
        while (!imuQueImu.empty() && ROS_TIME(&imuQueImu.front()) < currentCorrectionTime - delta_t)
        {
            lastImuQT = ROS_TIME(&imuQueImu.front());
            imuQueImu.pop_front();
        }


        // repropogate
        // 使用同样的imu数据进行了2次预积分,bias值不一样了
        if (!imuQueImu.empty())
        {
            // reset bias use the newly optimized bias
            // 使用最新的优化后的bias更新bias值
            imuIntegratorImu_->resetIntegrationAndSetBias(prevBiasOdom);
            // integrate imu message from the beginning of this optimization
            for (int i = 0; i < (int)imuQueImu.size(); ++i)
            {
                // 利用imuQueImu中的数据进行预积分 主要区别旧在于上一行的更新了bias 
                sensor_msgs::Imu *thisImu = &imuQueImu[i];
                double imuTime = ROS_TIME(thisImu);
                double dt = (lastImuQT < 0) ? (1.0 / 500.0) : (imuTime - lastImuQT);

                imuIntegratorImu_->integrateMeasurement(gtsam::Vector3(thisImu->linear_acceleration.x, thisImu->linear_acceleration.y, thisImu->linear_acceleration.z),
                                                        gtsam::Vector3(thisImu->angular_velocity.x, thisImu->angular_velocity.y, thisImu->angular_velocity.z), 
                                                        dt);
                lastImuQT = imuTime;
            }
        }

        ++key;
        doneFirstOpt = true;
    }

2.7 failureDetection()

    // 速度或者偏差过大,认为优化失败了,需要重置优化参数
    bool failureDetection(const gtsam::Vector3 &velCur, const gtsam::imuBias::ConstantBias &biasCur)
    {
        Eigen::Vector3f vel(velCur.x(), velCur.y(), velCur.z());
        if (vel.norm() > 30)
        {
            ROS_WARN("Large velocity, reset IMU-preintegration!");
            return true;
        }

        Eigen::Vector3f ba(biasCur.accelerometer().x(), biasCur.accelerometer().y(), biasCur.accelerometer().z());
        Eigen::Vector3f bg(biasCur.gyroscope().x(), biasCur.gyroscope().y(), biasCur.gyroscope().z());
        if (ba.norm() > 1.0 || bg.norm() > 1.0)
        {
            ROS_WARN("Large bias, reset IMU-preintegration!");
            return true;
        }

        return false;
    }

3 TransformFusion类

3.1 成员变量

class TransformFusion : public ParamServer
{
public:
    std::mutex mtx;

    ros::Subscriber subImuOdometry;
    ros::Subscriber subLaserOdometry;

    ros::Publisher pubImuOdometry;
    ros::Publisher pubImuPath;

    Eigen::Affine3f lidarOdomAffine;
    Eigen::Affine3f imuOdomAffineFront;
    Eigen::Affine3f imuOdomAffineBack;

    tf::TransformListener tfListener;
    tf::StampedTransform lidar2Baselink;

    double lidarOdomTime = -1;
    deque<nav_msgs::Odometry> imuOdomQueue;
};

3.2 构造函数

    {
        if (lidarFrame != baselinkFrame)
        {
            try
            {
                tfListener.waitForTransform(lidarFrame, baselinkFrame, ros::Time(0), ros::Duration(3.0));
                tfListener.lookupTransform(lidarFrame, baselinkFrame, ros::Time(0), lidar2Baselink);
            }
            catch (tf::TransformException ex)
            {
                ROS_ERROR("%s", ex.what());
            }
        }

        // 订阅激光里程计lio_sam/mapping/odometry 和 imu数据odometry/imu_incremental
        subLaserOdometry = nh.subscribe<nav_msgs::Odometry>("lio_sam/mapping/odometry", 5, &TransformFusion::lidarOdometryHandler, this, ros::TransportHints().tcpNoDelay());
        subImuOdometry = nh.subscribe<nav_msgs::Odometry>(odomTopic + "_incremental", 2000, &TransformFusion::imuOdometryHandler, this, ros::TransportHints().tcpNoDelay());

        // publisher 发布融合后的imu path和预积分完成优化后预测的 odometry/imu
        pubImuOdometry = nh.advertise<nav_msgs::Odometry>(odomTopic, 2000);
        pubImuPath = nh.advertise<nav_msgs::Path>("lio_sam/imu/path", 1);
    }

3.3 odom2affine()

    // 将odom数据转换成Affine3f
    Eigen::Affine3f odom2affine(nav_msgs::Odometry odom)
    {
        double x, y, z, roll, pitch, yaw;
        x = odom.pose.pose.position.x;
        y = odom.pose.pose.position.y;
        z = odom.pose.pose.position.z;
        tf::Quaternion orientation;
        tf::quaternionMsgToTF(odom.pose.pose.orientation, orientation);
        tf::Matrix3x3(orientation).getRPY(roll, pitch, yaw);
        return pcl::getTransformation(x, y, z, roll, pitch, yaw);
    }

3.4 lidarOdometryHandler()

    // 保存当前的雷达里程计数据与时间
    void lidarOdometryHandler(const nav_msgs::Odometry::ConstPtr &odomMsg)
    {
        std::lock_guard<std::mutex> lock(mtx);

        lidarOdomAffine = odom2affine(*odomMsg);

        lidarOdomTime = odomMsg->header.stamp.toSec();
    }

3.5 imuOdometryHandler()

    // 将imu_odom中的xyz, 用odom乘以imu的变换求得的xyz进行替换
    // 发布map->odom->base_link 的 tf
    void imuOdometryHandler(const nav_msgs::Odometry::ConstPtr &odomMsg)
    {
        // static tf 初始时刻的map->odom的tf为 (0,0,0)
        static tf::TransformBroadcaster tfMap2Odom;
        static tf::Transform map_to_odom = tf::Transform(tf::createQuaternionFromRPY(0, 0, 0),
                                                         tf::Vector3(0, 0, 0));
        // 发布map->odom的tf,map_to_odom这个值在之后没有进行改变
        // 也就是说map->odom的tf始终为 (0,0,0)
        tfMap2Odom.sendTransform(tf::StampedTransform(map_to_odom, odomMsg->header.stamp, mapFrame, odometryFrame));

        std::lock_guard<std::mutex> lock(mtx);

        // 存入队列
        imuOdomQueue.push_back(*odomMsg);

        // get latest odometry (at current IMU stamp)
        if (lidarOdomTime == -1)
            return;

        // 时间同步,找到imuOdomQueue的时间在lidarOdomTime之后的数据
        while (!imuOdomQueue.empty())
        {
            if (imuOdomQueue.front().header.stamp.toSec() <= lidarOdomTime)
                imuOdomQueue.pop_front();
            else
                break;
        }

        // 利用imu队列首尾之间的增量式变换获得最终里程计仿射矩阵(地图优化程序中发出的里程计*imu里程计增量)
        Eigen::Affine3f imuOdomAffineFront = odom2affine(imuOdomQueue.front());
        Eigen::Affine3f imuOdomAffineBack = odom2affine(imuOdomQueue.back());
        Eigen::Affine3f imuOdomAffineIncre = imuOdomAffineFront.inverse() * imuOdomAffineBack;
        Eigen::Affine3f imuOdomAffineLast = lidarOdomAffine * imuOdomAffineIncre;
        float x, y, z, roll, pitch, yaw;
        pcl::getTranslationAndEulerAngles(imuOdomAffineLast, x, y, z, roll, pitch, yaw);

        // publish latest odometry 发布最新的里程计
        nav_msgs::Odometry laserOdometry = imuOdomQueue.back();
        laserOdometry.pose.pose.position.x = x;
        laserOdometry.pose.pose.position.y = y;
        laserOdometry.pose.pose.position.z = z;
        laserOdometry.pose.pose.orientation = tf::createQuaternionMsgFromRollPitchYaw(roll, pitch, yaw);
        pubImuOdometry.publish(laserOdometry);

        // publish tf
        // 根据算出来的里程计,发布odom->base_link的tf
        static tf::TransformBroadcaster tfOdom2BaseLink;
        tf::Transform tCur;
        tf::poseMsgToTF(laserOdometry.pose.pose, tCur);
        if (lidarFrame != baselinkFrame)
            tCur = tCur * lidar2Baselink;
        tf::StampedTransform odom_2_baselink = tf::StampedTransform(tCur, odomMsg->header.stamp, odometryFrame, baselinkFrame);
        tfOdom2BaseLink.sendTransform(odom_2_baselink);

        // publish IMU path
        // 发布所有数据融合后的path
        static nav_msgs::Path imuPath;
        static double last_path_time = -1;
        double imuTime = imuOdomQueue.back().header.stamp.toSec();
        if (imuTime - last_path_time > 0.1)
        {
            last_path_time = imuTime;
            geometry_msgs::PoseStamped pose_stamped;
            pose_stamped.header.stamp = imuOdomQueue.back().header.stamp;
            pose_stamped.header.frame_id = odometryFrame;
            pose_stamped.pose = laserOdometry.pose.pose;
            imuPath.poses.push_back(pose_stamped);
            while (!imuPath.poses.empty() && 
                    imuPath.poses.front().header.stamp.toSec() < lidarOdomTime - 1.0)
                imuPath.poses.erase(imuPath.poses.begin());

            if (pubImuPath.getNumSubscribers() != 0)
            {
                imuPath.header.stamp = imuOdomQueue.back().header.stamp;
                imuPath.header.frame_id = odometryFrame;
                pubImuPath.publish(imuPath);
            }
        }
    }

总结一下

IMUPreintegration 订阅 lio_sam/mapping/odometry_incremental 和 imu_correct , 使用gtsam进行imu与激光里程计的紧耦合优化,发布优化后的 odometry/imu_incremental。

TransformFusion 订阅 IMUPreintegration发布的odometry/imu_incremental,以及激光里程计lio_sam/mapping/odometry 。

imuOdometryHandler 只是将 odometry/imu_incremental 中的xyz值,使用lio_sam/mapping/odometry中的值,乘以相应时间内的odometry/imu_incrementa的变化量,得到新的xyz进行替代; 并发布map->odom->base_link的tf。

gstam优化部分还没有看懂,回头看懂了再来更新

REFERENCES

LIO-SAM源码阅读与分析(3)–imuPreintegration.cpp
https://zhuanlan.zhihu.com/p/183190393

你可能感兴趣的:(激光SLAM,LIO-SAM,slam)