ubuntu16.04+cuda10.1安装opencv-3.3.0

目录

1.系统环境

2.安装一些基础命令

2.1更新包

2.2安装依赖项

3.下载OpenCV 和 OpenCV_contrib 源码包

3.1下载地址

3.2解压并移动opencv_contrib-3.3.0到opencv-3.3.0

4.修改源码包中某些文件

5.编译安装opencv-3.3.0

5.1获取配置参数

5.2生成配置

5.3编译

5.4安装



1.系统环境

系统:ubuntu16.04

GPU驱动:nvidia-driver-418-server

CUDA版本:cuda10.1

CUDNN版本:cudnn7.6.4

Anaconda版本:Anaconda5.2 (python3.6)

2.安装一些基础命令

2.1更新包

sudo apt update
sudo apt upgrade

2.2安装依赖项

sudo apt-get remove x264 libx264-dev
sudo apt-get install build-essential checkinstall cmake pkg-config yasm
sudo apt-get install git gfortran
sudo apt-get install libjpeg8-dev libjasper-dev libpng12-dev
sudo apt-get install libtiff5-dev
sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libdc1394-22-dev
sudo apt-get install libxine2-dev libv4l-dev
sudo apt-get install libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev
sudo apt-get install qt5-default libgtk2.0-dev libtbb-dev
sudo apt-get install libatlas-base-dev
sudo apt-get install libfaac-dev libmp3lame-dev libtheora-dev
sudo apt-get install libvorbis-dev libxvidcore-dev
sudo apt-get install libopencore-amrnb-dev libopencore-amrwb-dev
sudo apt-get install x264 v4l-utils
# Optional dependencies
sudo apt-get install libprotobuf-dev protobuf-compiler
sudo apt-get install libgoogle-glog-dev libgflags-dev
sudo apt-get install libgphoto2-dev libeigen3-dev libhdf5-dev doxygen

3.下载OpenCV 和 OpenCV_contrib 源码包

3.1下载地址

GitHub - opencv/opencv at 3.3.0

GitHub - opencv/opencv_contrib at 3.3.0

3.2解压并移动opencv_contrib-3.3.0到opencv-3.3.0

lu@computer:~/project$ ll
total 137564
drwxrwxr-x  4 lu lu     4096 5月  24 14:06 ./
drwxr-xr-x 35 lu lu     4096 5月  24 09:58 ../
drwxrwxr-x 11 lu lu     4096 8月   4  2017 opencv-3.3.0/
-rw-rw-r--  1 lu lu 84873317 5月  24 14:05 opencv-3.3.0.zip
drwxrwxr-x  6 lu lu     4096 7月  31  2017 opencv_contrib-3.3.0/
-rw-rw-r--  1 lu lu 55968854 5月  24 14:05 opencv_contrib-3.3.0.zip
lu@computer:~/project$ mv opencv_contrib-3.3.0 opencv-3.3.0
lu@computer:~/project$ cd opencv-3.3.0/
lu@computer:~/project/opencv-3.3.0$ ll
total 128
drwxrwxr-x 12 lu lu  4096 5月  24 14:07 ./
drwxrwxr-x  3 lu lu  4096 5月  24 14:07 ../
drwxrwxr-x 18 lu lu  4096 8月   4  2017 3rdparty/
drwxrwxr-x  8 lu lu  4096 8月   4  2017 apps/
drwxrwxr-x  5 lu lu  4096 8月   4  2017 cmake/
-rw-rw-r--  1 lu lu 64394 8月   4  2017 CMakeLists.txt
-rw-rw-r--  1 lu lu   191 8月   4  2017 CONTRIBUTING.md
drwxrwxr-x  7 lu lu  4096 8月   4  2017 data/
drwxrwxr-x  5 lu lu  4096 8月   4  2017 doc/
drwxrwxr-x  4 lu lu  4096 8月   4  2017 include/
-rw-rw-r--  1 lu lu  2234 8月   4  2017 LICENSE
drwxrwxr-x 36 lu lu  4096 8月   4  2017 modules/
drwxrwxr-x  6 lu lu  4096 7月  31  2017 opencv_contrib-3.3.0/
drwxrwxr-x  9 lu lu  4096 8月   4  2017 platforms/
-rw-rw-r--  1 lu lu   569 8月   4  2017 README.md
drwxrwxr-x 19 lu lu  4096 8月   4  2017 samples/
-rw-rw-r--  1 lu lu    33 8月   4  2017 .tgitconfig
lu@computer:~/project/opencv-3.3.0$

4.修改源码包中某些文件

(参考https://blog.csdn.net/qq_15505637/article/details/79622968)


  • FindCUDA.cmake文件

find_cuda_helper_libs(nppi) 改为:

find_cuda_helper_libs(nppial)  
find_cuda_helper_libs(nppicc)  
find_cuda_helper_libs(nppicom)  
find_cuda_helper_libs(nppidei)  
find_cuda_helper_libs(nppif)  
find_cuda_helper_libs(nppig)  
find_cuda_helper_libs(nppim)  
find_cuda_helper_libs(nppist)  
find_cuda_helper_libs(nppisu)  
find_cuda_helper_libs(nppitc)  

set(CUDA_npp_LIBRARY "${CUDA_nppc_LIBRARY};${CUDA_nppi_LIBRARY};${CUDA_npps_LIBRARY}") 改为:

set(CUDA_npp_LIBRARY "${CUDA_nppc_LIBRARY};${CUDA_nppial_LIBRARY};${CUDA_nppicc_LIBRARY};${CUDA_nppicom_LIBRARY};${CUDA_nppidei_LIBRARY};${CUDA_nppif_LIBRARY};${CUDA_nppig_LIBRARY};${CUDA_nppim_LIBRARY};${CUDA_nppist_LIBRARY};${CUDA_nppisu_LIBRARY};${CUDA_nppitc_LIBRARY};${CUDA_npps_LIBRARY}")  

unset(CUDA_nppi_LIBRARY CACHE) 改为:

unset(CUDA_nppial_LIBRARY CACHE)  
unset(CUDA_nppicc_LIBRARY CACHE)  
unset(CUDA_nppicom_LIBRARY CACHE)  
unset(CUDA_nppidei_LIBRARY CACHE)  
unset(CUDA_nppif_LIBRARY CACHE)  
unset(CUDA_nppig_LIBRARY CACHE)  
unset(CUDA_nppim_LIBRARY CACHE)  
unset(CUDA_nppist_LIBRARY CACHE)  
unset(CUDA_nppisu_LIBRARY CACHE)  
unset(CUDA_nppitc_LIBRARY CACHE)  
  • OpenCVDetectCUDA.cmake文件

 set(__cuda_arch_ptx "")   
 if(CUDA_GENERATION STREQUAL "Fermi")     
 	set(__cuda_arch_bin "2.0")   
 elseif(CUDA_GENERATION STREQUAL "Kepler")     
 	set(__cuda_arch_bin "3.0 3.5 3.7")  

改为

 set(__cuda_arch_ptx "")   
 if(CUDA_GENERATION STREQUAL "Kepler")     
 	set(__cuda_arch_bin "3.0 3.5 3.7")  
  • common.hpp文件

u@computer:~/project/opencv-3.3.0$ find ./ -name common.hpp
./3rdparty/carotene/src/common.hpp
./samples/android/tutorial-4-opencl/jni/common.hpp
./modules/cudev/include/opencv2/cudev/common.hpp
./modules/core/include/opencv2/core/cuda/common.hpp
lu@computer:~/project/opencv-3.3.0$
在3rdparty和modules模块中的common.hpp中添加#include 

5.编译安装opencv-3.3.0

5.1获取配置参数

找到自己的cuda库安装路径CUDA_CUDA_LIBRARY:

我的本地路径是:

/usr/local/cuda/lib64/stubs/libcuda.so

然后确定CUDA_ARCH_BIN ,需要和自己的gpu对应,假设安装的是cuda-10.1,则

lu@computer:~$ 
lu@computer:~$ cd /usr/local/cuda/samples/1_Utilities/deviceQuery
lu@computer:/usr/local/cuda/samples/1_Utilities/deviceQuery$ 
lu@computer:/usr/local/cuda/samples/1_Utilities/deviceQuery$ sudo make
[sudo] password for lu: 
/usr/local/cuda/bin/nvcc -ccbin g++ -I../../common/inc  -m64    -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o deviceQuery.o -c deviceQuery.cpp
/usr/local/cuda/bin/nvcc -ccbin g++   -m64      -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o deviceQuery deviceQuery.o 
mkdir -p ../../bin/x86_64/linux/release
cp deviceQuery ../../bin/x86_64/linux/release
lu@computer:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ./deviceQuery 
./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce 940M"
  CUDA Driver Version / Runtime Version          10.1 / 10.1
  CUDA Capability Major/Minor version number:    5.0
  Total amount of global memory:                 2004 MBytes (2101870592 bytes)
  ( 3) Multiprocessors, (128) CUDA Cores/MP:     384 CUDA Cores
  GPU Max Clock rate:                            1150 MHz (1.15 GHz)
  Memory Clock rate:                             900 Mhz
  Memory Bus Width:                              64-bit
  L2 Cache Size:                                 1048576 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 1 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            No
  Supports Cooperative Kernel Launch:            No
  Supports MultiDevice Co-op Kernel Launch:      No
  Device PCI Domain ID / Bus ID / location ID:   0 / 4 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.1, CUDA Runtime Version = 10.1, NumDevs = 1
Result = PASS
lu@computer:/usr/local/cuda/samples/1_Utilities/deviceQuery$ 


然后找到输出信息中的CUDA Capability Major/Minor version number。
我的是5.0

5.2生成配置

cd opencv-3.3.0
mkdir build_cuda
cd build_cuda
cmake \
    -D CMAKE_BUILD_TYPE=RELEASE \
    -D CMAKE_INSTALL_PREFIX=/usr/local \
    -D OPENCV_EXTRA_MODULES_PATH=../opencv_contrib-3.3.0/modules/ \
    -D CUDA_CUDA_LIBRARY=/usr/local/cuda/lib64/stubs/libcuda.so \
    -D CUDA_ARCH_BIN=5.0 \   
    -D CUDA_ARCH_PTX="" \
    -D WITH_CUDA=ON \
    -D WITH_TBB=ON \
    -D BUILD_NEW_PYTHON_SUPPORT=ON \
    -D WITH_V4L=ON \
    -D INSTALL_C_EXAMPLES=ON \
    -D INSTALL_PYTHON_EXAMPLES=ON \
    -D BUILD_EXAMPLES=ON \
    -D WITH_QT=ON \
    -D WITH_OPENGL=ON \
    -D ENABLE_FAST_MATH=1 \
    -D CUDA_FAST_MATH=1 \
    -D WITH_CUBLAS=1 \
    -D WITH_NVCUVID=1 \
    -D BUILD_opencv_cudacodec=OFF ..

可能遇到的问题:

编译器版本不对报错

"not supported c++11"

opencv-3.3.0编译要用到C++11,需要把编译器版本升级到gcc-7和g++-7

卡在IPPICV下载

-- IPPICV: Download: ippicv_2017u2_lnx_intel64_20170418.tgz

多等待一会一般会自动跳过,或者手动下载,网上有很多教程,这里不再赘述

opencv_3rdparty/ippicv at ippicv/master_20170418 · opencv/opencv_3rdparty · GitHub

缺少videodev.h

linux/videodev.h not found

执行下面命令

sudo ln -s /usr/include/libv4l1-videodev.h  /usr/include/linux/videodev.h

缺少videoio.h

sys/videoio.h not found

执行下面命令

sudo cp /usr/include/opencv2/videoio/videoio_c.h  /usr/include/x86_64-linux-gnu/sys
sudo ln -s /usr/include/x86_64-linux-gnu/sys/videoio_c.h  /usr/include/x86_64-linux-gnu/sys/videoio.h

配置成功如下

--     To be built:                 cudev core cudaarithm flann hdf imgproc ml objdetect phase_unwrapping plot reg surface_matching video xphoto bgsegm cudabgsegm cudafilters cudaimgproc cudawarping dnn face fuzzy img_hash imgcodecs photo shape videoio xobjdetect highgui ts bioinspired dpm features2d line_descriptor saliency text calib3d ccalib cudafeatures2d cudalegacy cudaobjdetect cudaoptflow cudastereo cvv datasets rgbd stereo structured_light superres tracking videostab xfeatures2d ximgproc aruco optflow stitching
--     Disabled:                    cudacodec world contrib_world
--     Disabled by dependency:      -
--     Unavailable:                 java python2 python3 viz cnn_3dobj dnn_modern freetype matlab sfm xfeatures2d
-- 
--   GUI: 
--     QT 5.x:                      YES (ver 5.9.5)
--     QT OpenGL support:           YES (Qt5::OpenGL 5.9.5)
--     OpenGL support:              YES (/usr/lib/x86_64-linux-gnu/libGL.so /usr/lib/x86_64-linux-gnu/libGLU.so)
--     VTK support:                 NO
-- 
--   Media I/O: 
--     ZLib:                        zlib (ver 1.2.8)
--     JPEG:                        libjpeg (ver 90)
--     WEBP:                        build (ver encoder: 0x020e)
--     PNG:                         build (ver 1.6.24)
--     TIFF:                        build (ver 42 - 4.0.2)
--     JPEG 2000:                   build (ver 1.900.1)
--     OpenEXR:                     build (ver 1.7.1)
--     GDAL:                        NO
--     GDCM:                        NO
-- 
--   Video I/O:
--     DC1394 1.x:                  NO
--     DC1394 2.x:                  NO
--     FFMPEG:                      NO
--       avcodec:                   NO
--       avformat:                  NO
--       avutil:                    NO
--       swscale:                   NO
--       avresample:                NO
--     GStreamer:                   NO
--     OpenNI:                      NO
--     OpenNI PrimeSensor Modules:  NO
--     OpenNI2:                     NO
--     PvAPI:                       NO
--     GigEVisionSDK:               NO
--     Aravis SDK:                  NO
--     UniCap:                      NO
--     UniCap ucil:                 NO
--     V4L/V4L2:                    NO/YES
--     XIMEA:                       NO
--     Xine:                        NO
--     Intel Media SDK:             NO
--     gPhoto2:                     NO
-- 
--   Parallel framework:            pthreads
-- 
--   Trace:                         YES (with Intel ITT)
-- 
--   Other third-party libraries:
--     Use Intel IPP:               2017.0.2 [2017.0.2]
--                at:               /home/lu/project/opencv-3.3.0/build_cuda/3rdparty/ippicv/ippicv_lnx
--     Use Intel IPP IW:            prebuilt binaries (2017.0.2)
--     Use Intel IPP Async:         NO
--     Use VA:                      NO
--     Use Intel VA-API/OpenCL:     NO
--     Use Lapack:                  NO
--     Use Eigen:                   NO
--     Use Cuda:                    YES (ver 10.1)
--     Use OpenCL:                  YES
--     Use OpenVX:                  NO
--     Use custom HAL:              NO
-- 
--   NVIDIA CUDA
--     Use CUFFT:                   YES
--     Use CUBLAS:                  YES
--     USE NVCUVID:                 YES
--     NVIDIA GPU arch:             50
--     NVIDIA PTX archs:
--     Use fast math:               YES
-- 
--   OpenCL:                        
--     Include path:                /home/lu/project/opencv-3.3.0/3rdparty/include/opencl/1.2
--     Use AMDFFT:                  NO
--     Use AMDBLAS:                 NO
-- 
--   Python 2:
--     Interpreter:                 NO
-- 
--   Python 3:
--     Interpreter:                 /home/lu/anaconda3/bin/python3 (ver 3.6.5)
-- 
--   Python (for build):            /home/lu/anaconda3/bin/python3
-- 
--   Java:
--     ant:                         NO
--     JNI:                         NO
--     Java wrappers:               NO
--     Java tests:                  NO
-- 
--   Matlab:                        Matlab not found or implicitly disabled
-- 
--   Documentation:
--     Doxygen:                     NO
-- 
--   Tests and samples:
--     Tests:                       YES
--     Performance tests:           YES
--     C/C++ Examples:              YES
-- 
--   Install path:                  /usr/local
-- 
--   cvconfig.h is in:              /home/lu/project/opencv-3.3.0/build_cuda
-- -----------------------------------------------------------------
-- 
-- Configuring done
-- Generating done
-- Build files have been written to: /home/lu/project/opencv-3.3.0/build_cuda
lu@computer:~/project/opencv-3.3.0/build_cuda$ 

5.3编译

make -j8

可能报错:

在编译stitching模块时会提示:
找不到cuda.hpp即matchers.hpp:52:42: fatal error: opencv2/xfeatures2d/cuda.hpp: No such file or directory

opencv-3.3.0/modules/stitching/CMakeLists.txt文件中加入一条语句使其include opencv_contrib-3.3.0/modules/xfeatures2d/include,可以是绝对路径,如

INCLUDE_DIRECTORIES("/home/lu/project/opencv-3.3.0/opencv_contrib-3.3.0/modules/xfeatures2d/include")

缺失错误:
opencv_contrib/modules/xfeatures2d/src/boostdesc.cpp:673:20: fatal error: boostdesc_bgm.i: No such file or directory

先检查本地download目录下是否下载成功,有的话直接拷贝源码并生存同名文件,放在 opencv_contrib/modules/xfeatures2d/src/ 路径下

lu@computer:~/project/opencv-3.3.0/build_cuda$ ls downloads/xfeatures2d/ -l
total 3296
-rw-rw-r-- 1 lu lu   14864 5月  24 16:06 boostdesc_bgm_bi.i
-rw-rw-r-- 1 lu lu    7832 5月  24 14:37 boostdesc_bgm_hd.i
-rw-rw-r-- 1 lu lu   14852 5月  24 14:36 boostdesc_bgm.i
-rw-rw-r-- 1 lu lu  138093 5月  24 14:37 boostdesc_binboost_064.i
-rw-rw-r-- 1 lu lu  275322 5月  24 14:37 boostdesc_binboost_128.i
-rw-rw-r-- 1 lu lu  549754 5月  24 14:39 boostdesc_binboost_256.i
-rw-rw-r-- 1 lu lu  426280 5月  24 14:39 boostdesc_lbgm.i
-rw-rw-r-- 1 lu lu  915012 5月  24 14:40 vgg_generated_64.i
-rw-rw-r-- 1 lu lu 1012932 5月  24 14:43 vgg_generated_80.i
lu@computer:~/project/opencv-3.3.0/build_cuda$ 
lu@computer:~/project/opencv-3.3.0/build_cuda$ cp -rf downloads/xfeatures2d/* ../opencv_contrib-3.3.0/modules/xfeatures2d/src/
lu@computer:~/project/opencv-3.3.0/build_cuda$

如果本地没有可以单独下载

在日志文件CMakeDownloadLog.txt中搜索 boostdesc_bgm.i 关键词 ,日志文件里就有它的下载地址,直接下载拷贝放在 opencv_contrib/modules/xfeatures2d/src/ 路径下即可
 

如果基于cuda11.1编译opencv3.3会报错如下:

**CMake Error: The following variables are used in this project, but they are set to NOTFOUND.
Please set them or make sure they are set and tested correctly in the CMake files:
CUDA_nppi_LIBRARY (ADVANCED)
    linked by target "opencv_cudev" in directory /home/lu/project/opencv-3.3.0/modules/cudev

find ./ -name FindCUDA.cmake指令找到FindCUDA.cmake文件

  找到find_cuda_helper_libs(nppicom)改成:
  
  if(CUDA_VERSION VERSION_LESS "11.0")
    find_cuda_helper_libs(nppicom)
  endif()

之所以会报错是因为在CUDA 11.0中,移除了这个库。但是CMAKE好像没及时更新。因此,信息不同步,导致报错。

编译完成如下

[ 99%] Linking CXX executable ../../bin/cpp-example-3calibration
[ 99%] Built target tutorial_Drawing_2
[ 99%] Built target tutorial_file_input_output
[100%] Linking CXX executable ../../bin/cpp-tutorial-camera_calibration
[100%] Built target example_3calibration
[100%] Built target tutorial_camera_calibration
[100%] Linking CXX executable ../../bin/cpp-tutorial-planar_tracking
[100%] Built target tutorial_planar_tracking
lu@computer:~/project/opencv-3.3.0/build_cuda$

5.4安装


sudu make install

参考:

在Ubuntu16.04/18.04 安装opencv3.3.0(可选带contrib和cuda)_仰望天空-脚踏实地-CSDN博客

Ubuntu18.04安装Opencv3.3.0(带CUDA10.1)_博博有个大大大的Dream-CSDN博客

你可能感兴趣的:(人工智能,ubuntu,cuda10.1,opencv-3.3.0)