一、基本理论
采用soft - gamma: 在训练的过程中阶段性的增大gamma 可能会有更好的性能提升。
alpha 与每个类别在训练数据中的频率有关。
F.nll_loss(torch.log(F.softmax(inputs, dim=1),target)的函数功能与F.cross_entropy相同。
F.nll_loss中实现了对于target的one-hot encoding,将其编码成与input shape相同的tensor,然后与前面那一项(即F.nll_loss输入的第一项)进行 element-wise production。
基于alpha=1采用不同的gamma值进行实验的结果
focal loss解决了什么问题?
(1)不同类别不均衡
(2)难易样本不均衡
在retinanet中,除了使用呢focal loss外,还对初始化做了特殊处理,具体是怎么做的?
在retinanet中,对 classification subnet 的最后一层conv设置它的偏置b为:
b=−log((1−π)/π)
π代表先验概率,就是类别不平衡中个数少的那个类别占总数的百分比,在检测中就是代表object的anchor占所有anchor的比重,论文中设置的为0.01。
二、公式
标准的Cross Entropy 为:[图片上传失败...(image-286df1-1571884440851)]
Focal Loss 为:[图片上传失败...(image-460db1-1571884440851)]
其中,[图片上传失败...(image-d6c655-1571884440851)]
三、代码实现
一、来自Kaggle的实现(基于二分类交叉熵实现)
class FocalLoss(nn.Module):
def __init__(self, alpha=1, gamma=2, logits=False, reduce=True):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.logits = logits
self.reduce = reduce
def forward(self, inputs, targets):
if self.logits:
BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduce=False)
else:
BCE_loss = F.binary_cross_entropy(inputs, targets, reduce=False)
pt = torch.exp(-BCE_loss)
F_loss = self.alpha * (1-pt)**self.gamma * BCE_loss
if self.reduce:
return torch.mean(F_loss)
else:
return F_loss
二、来自知乎大佬的实现:
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class FocalLoss(nn.Module):
r"""
This criterion is a implemenation of Focal Loss, which is proposed in
Focal Loss for Dense Object Detection.
Loss(x, class) = - \alpha (1-softmax(x)[class])^gamma \log(softmax(x)[class])
The losses are averaged across observations for each minibatch.
Args:
alpha(1D Tensor, Variable) : the scalar factor for this criterion
gamma(float, double) : gamma > 0; reduces the relative loss for well-classified examples (p > .5),
putting more focus on hard, misclassified examples
size_average(bool): By default, the losses are averaged over observations for each minibatch.
However, if the field size_average is set to False, the losses are
instead summed for each minibatch.
"""
def __init__(self, class_num, alpha=None, gamma=2, size_average=True):
super(FocalLoss, self).__init__()
if alpha is None:
self.alpha = Variable(torch.ones(class_num, 1))
else:
if isinstance(alpha, Variable):
self.alpha = alpha
else:
self.alpha = Variable(alpha)
self.gamma = gamma
self.class_num = class_num
self.size_average = size_average
def forward(self, inputs, targets):
N = inputs.size(0)
C = inputs.size(1)
P = F.softmax(inputs)
class_mask = inputs.data.new(N, C).fill_(0)
class_mask = Variable(class_mask)
ids = targets.view(-1, 1)
class_mask.scatter_(1, ids.data, 1.)
#print(class_mask)
if inputs.is_cuda and not self.alpha.is_cuda:
self.alpha = self.alpha.cuda()
alpha = self.alpha[ids.data.view(-1)]
probs = (P*class_mask).sum(1).view(-1,1)
log_p = probs.log()
#print('probs size= {}'.format(probs.size()))
#print(probs)
batch_loss = -alpha*(torch.pow((1-probs), self.gamma))*log_p
#print('-----bacth_loss------')
#print(batch_loss)
if self.size_average:
loss = batch_loss.mean()
else:
loss = batch_loss.sum()
return loss
参考