本篇文章来自于learnopencv.com/number-of-parameters-and-tensor-sizes-in-convolutional-neural-network/,感谢原作者的详细讲解。本人增加一些白话进行补充说明,高手请绕行。~-~
在这篇文章中,我们分享了一些公式来计算张量(图像)的大小和卷积神经网络(CNN)中每一层的参数个数。 此帖子不定义CNN中使用的基本术语,并假定您熟悉它们。在这篇文章中,Tensor一词仅仅是指具有任意数量通道的图像。 我们将以AlexNet为例展示计算结果。因此,这里是AlexNet的架构,供参考。
AlexNet有以下几层
1、输入层:大小为227x227x3的彩色图像。AlexNet的论文提到了224×224的输入大小,但这是论文中的一个书写错误。
2、卷积层1:由96个尺寸为11×11的卷积核组成,步长为4,填充为0。
3、最大池化层1:由3×3和步长2组成。
4、卷积层2:由256个大小为5×5的卷积核组成,步长为1,填充为2。
5、最大池化层2:由3×3和步长2组成。
6、卷积层3:由384个大小为3×3的卷积核组成,步长为1,填充为1。
7、卷积层4:卷积层4与卷积层3具有相同的结构。它由384个大小为3×3的内核组成,步长为1,填充为1。
8、卷积层5:由256个大小为3×3的内核组成,步长为1,填充为1。
9、最大池化层3:由3×3和步长2组成。
10、全连接层1:第一个完全连接层有4096个神经元。
11、全连接层2:第二个完全连接层有4096个神经元。
12、全连接层3:第三个完全连接层有1000个神经元。
接下来,我们将用上面的架构来解释
1、如何计算每个阶段的张量大小
2、如何计算网络中的参数总数
卷积层输出张量(图像)的大小
我们来定义一下
O = 输出图像的大小(此处指宽度)
I = 输入图像的大小(此处指宽度)。
K = 卷积层中使用的卷积核的大小(此处指宽度)。
N = 卷积核个数。
S = 卷积运算的步长。
P = 填充个数。
输出图像的大小(O)由 下式确定:
输出图像中的通道数等于该卷积层的卷积核个数N。
示例:
在AlexNet中,输入图像的大小为227x227x3。即宽为227,高为227,通道数为3。卷积层1有96个卷积核,每个卷积核的大小为11x11x3,步长为4,填充为0。因此,在卷积层1之后输出图像的大小(此处指宽度)是
因此,输出图像的大小为55x55x96(每个卷积核生成一个通道)。 请读者使用上述图像作为指南来验证卷积层2、卷积层3、卷积层4和卷积层5的输出图像的大小。
Max Pool层输出张量(图像)的大小
我们来定义一下
O = 输出图像的大小(此处指宽度)。
I = 输入图像的大小(此处指宽度)。
S = 卷积运算的步长。
=池大小。
输出图像的大小(O)由下式确定
请注意,该公式可由上一节中卷积层输出图像大小的计算公式获得,只要使填充等于零,并且与卷积核大小K相同即可。但与卷积层不同的是,最大池化层输出的通道数不变。
例如:在AlexNet中,卷积层1之后的最大池化层的池大小为3,步长为2。我们从上一节中知道,这个阶段的图像是55x55x96。最大池化层1之后的输出图像大小(此处指宽度)
因此,输出图像的大小为27x27x96。 我们留给读者来验证最大池化层2和最大池化层3输出的大小。
完全连接层输出的大小
一个完全连接层输出一个向量,该向量长度(向量的元素个数)等于层中的神经元个数。
总结:AlexNet各个层的张量大小 (即每个层的神经元个数)
在AlexNet中,输入是一个大小为227x227x3的图像。在卷积层1之后,将变为为55x55x96的大小,在最大池化层1之后转换为27x27x96。在卷积层2之后,大小更改为27x27x256,并在最大池化层2之后更改为13x13x256。之后卷积层3将其转换为大小为13x13x384,而卷积层4则保持大小不变,卷积层5将更改大小为27x27x256。最后,最大池化层3将尺寸缩小到6x6x256。该图像输入全连接层1,将其转换为大小为4096×1的向量,接下来经过全连接层2,尺寸保持不变,最后,经过全连接层3之后的尺寸为1000×1。 接下来,我们要计算每个卷积层中的参数个数。
卷积层的参数个数
在CNN中,每一层都有两种参数:权重和偏差。参数的总数只是所有权重和偏差的总和。
我们来定义一下:
=Conv层的权重个数
=Conv层的偏差个数
=Conv层的参数个数
K=卷积层中使用的卷积核的大小(此处指宽度)
N=卷积核个数
C=该层输入图像的通道数
在卷积层中,每个卷积核的深度总是等于输入图像中的通道数。所以每个卷积核都有K^2 × C 个参数,并且有N个这样的卷积核。这就是我们得出上述公式的方法。
例如:在AlexNet中,在卷积层1中,输入图像的通道数(C)为3,卷积核大小(K)为11,卷积核数(N)为96。所以参数的个数是:
读者可以验证卷积层2、卷积层3、卷积层4、卷积层5的参数个数分别为614656、885120、1327488和884992。因此,卷积层的参数总数为3747200。你认为这是一个很大的数字?好吧,等到我们看到完全连接层,你就不会这么想了。卷积层的好处之一是,权重是共享的,因此我们的参数比我们在完全连接层的情况下要少的多。所谓权重共享的意思是,卷积层的输出结果中的每个通道由一个卷积核(仅1个)经过卷积运算获得,以卷积层1为例,它的输出为55*55*96,即共有96个通道,每个通道大小为55*55,具体到其中任意一个通道,比如第一个通道C1,由55*55个点组成,它是如何得到的呢?就是由相应的1号卷积核对输入图像(227*227*3)进行一次卷积运算得到的,生成的55*55里面的每个点所使用的权重参数都是这个1号卷积核,这就叫权重共享。
最大池化层的参数个数
没有与最大池化层相关联的参数。池的大小、步长和填充都是超参数。
全连接(FC)层的参数个数
在CNN中有两种完全连接的层。第一种是该全连接层的前面连接着最后一个卷积层,第二种是该全连接层的前面连接着其他全连接层。让我们分别考虑每一种情况。
情况1:前面连接着卷积层的全连接(FC)层的参数个数
我们来定义一下:
=连接到卷积层的全连接层的权重个数。
=连接到卷积层的全连接层的偏差个数。
O=前一个卷积层的输出图像的大小(宽度)。
N=前一个卷积层中的卷积核个数。
F=全连接层中的神经元个数。
示例:AlexNet的第一个全连接层连接到卷积层。对于这一层,O=6,N=256,F=4096。因此,
这一层的参数个数比所有卷积层的参数个数总和还要多!
情况2:前面连接着其它全连接层的全连接(FC)层的参数个数
我们来定义一下:
=全连接层的权数。
=全连接层的偏差数。
=全连接层的参数数目。
F=全连接层中的神经元数。
=前一个全连接层中的神经元数。
在上述公式中, × F是前一个全连接层到本全连接层的权重总数。偏差总数与本全连接层的神经元数(F)相同。
示例:AlexNet的最后一个全连接层连接到全连接层。对于这一层,=4096,F=1000。因此,
我们留给读者来验证AlexNet中全连接层2的参数总数为16,781,312。
AlexNet中参数和张量大小(神经元个数)的数目
在AlexNet中的参数总数是5个卷积层加3个全连接层中所有参数的总和。结果竟然是62378344!下表为摘要。
注:Conv ->卷积层,MaxPool -> 最大池化层, FC -> 全连接层
Layer Name | Tensor Size | Weights | Biases | Parameters |
Input Image | 227x227x3 | 0 | 0 | 0 |
Conv-1 | 55x55x96 | 34,848 | 96 | 34,944 |
MaxPool-1 | 27x27x96 | 0 | 0 | 0 |
Conv-2 | 27x27x256 | 614,400 | 256 | 614,656 |
MaxPool-2 | 13x13x256 | 0 | 0 | 0 |
Conv-3 | 13x13x384 | 884,736 | 384 | 885,120 |
Conv-4 | 13x13x384 | 1,327,104 | 384 | 1,327,488 |
Conv-5 | 13x13x256 | 884,736 | 256 | 884,992 |
MaxPool-3 | 6x6x256 | 0 | 0 | 0 |
FC-1 | 4096×1 | 37,748,736 | 4,096 | 37,752,832 |
FC-2 | 4096×1 | 16,777,216 | 4,096 | 16,781,312 |
FC-3 | 1000×1 | 4,096,000 | 1,000 | 4,097,000 |
Output | 1000×1 | 0 | 0 | 0 |
Total | 62,378,344 |