推导原理 : 麦克劳林公式 f ( x ) = f ( 0 ) + f ′ ( 0 ) x + . . . . . . + f ( n ) ( 0 ) x n n ! + o ( x n ) 推导原理:麦克劳林公式f(x)=f(0)+f'(0)x +......+ \frac{f^{(n)}(0)x^n}{n!}+o(x^n) 推导原理:麦克劳林公式f(x)=f(0)+f′(0)x+......+n!f(n)(0)xn+o(xn)
助记: s i n x , t a n x 分别与 a r c s i n x , a r c t a n x 的 x 3 符号相反 助记:sinx,tanx分别与arcsinx,arctanx的x^3符号相反\\~ 助记:sinx,tanx分别与arcsinx,arctanx的x3符号相反
1. s i n x = x − 1 3 ! x 3 + 1 5 ! x 5 + o ( x 5 ) 1.~~sinx=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5+o(x^5) 1. sinx=x−3!1x3+5!1x5+o(x5)
2. c o s x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + o ( x 4 ) 2.~~cosx=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4+o(x^4) 2. cosx=1−2!1x2+4!1x4+o(x4)
3. t a n x = x + 1 3 ! x 3 − 1 5 ! x 5 + o ( x 5 ) 3.~~tanx=x+\frac{1}{3!}x^3-\frac{1}{5!}x^5+o(x^5) 3. tanx=x+3!1x3−5!1x5+o(x5)
4. a r c s i n x = x + 1 6 x 3 + o ( x 3 ) 4.~~arcsinx=x+\frac{1}{6}x^3+o(x^3) 4. arcsinx=x+61x3+o(x3)
5. a r c t a n x = x − 1 3 x 3 + o ( x 3 ) 5.~~arctanx=x-\frac{1}{3}x^3+o(x^3) 5. arctanx=x−31x3+o(x3)
6. l n ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − 1 4 x 4 + o ( x 4 ) 6.~~ln(1+x)=x- \frac{1}{2}x^2+ \frac{1}{3}x^3-\frac{1}{4}x^4+o(x^4) 6. ln(1+x)=x−21x2+31x3−41x4+o(x4)
7. e x = 1 + x + 1 2 x 2 + 1 3 ! x 3 + ⋅ ⋅ ⋅ + 1 n ! x n + o ( x n ) 7.~~e^x=1+x+\frac{1}{2}x^2+\frac{1}{3!}x^3+\cdot \cdot \cdot+\frac{1}{n!}x^n+o(x^n) 7. ex=1+x+21x2+3!1x3+⋅⋅⋅+n!1xn+o(xn)
8. ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 x 2 + o ( x 2 ) 8.~~(1+x)^{\alpha}=1+{\alpha}x+\frac{{\alpha}({\alpha}-1)}{2}x^2+o(x^2) \\~ 8. (1+x)α=1+αx+2α(α−1)x2+o(x2)
当 x → 0 时: 当x\rightarrow0时: 当x→0时:
1. 变型: 1 + f ( x ) α − 1 = ( 1 + f ( x ) ) 1 α − 1 ∼ 1 α f ( x ) l n ( f ( x ) ) = l n ( 1 + ( f ( x ) − 1 ) ) ∼ f ( x ) − 1 e f ( x ) − e g ( x ) = e g ( x ) ( e f ( x ) − g ( x ) − 1 ) = e g ( x ) ( f ( x ) − g ( x ) ) 1.变型:\\~ \\~ \sqrt[\alpha]{1+f(x)}-1=(1+f(x))^\frac{1}{\alpha}-1\sim \frac{1}{\alpha}f(x) \\~ \\~ ln(f(x))=ln(1+(f(x)-1))\sim f(x)-1\\~ \\~e^{f(x)}-e^{g(x)}=e^{g(x)}(e^{f(x)-g(x)}-1)=e^{g(x)}(f(x)-g(x)) \\~ 1.变型: α1+f(x)−1=(1+f(x))α1−1∼α1f(x) ln(f(x))=ln(1+(f(x)−1))∼f(x)−1 ef(x)−eg(x)=eg(x)(ef(x)−g(x)−1)=eg(x)(f(x)−g(x))
2. 组合: s i n x − t a n x = − 1 2 x 3 + o ( x 3 ) a r c s i n x − a r c t a n x = 1 2 x 3 + o ( x 3 ) 2.组合:\\sinx-tanx=-\frac{1}{2}x^3+o(x^3) \\arcsinx-arctanx=\frac{1}{2}x^3+o(x^3) \\~ 2.组合:sinx−tanx=−21x3+o(x3)arcsinx−arctanx=21x3+o(x3)
3. 等价无穷小 ( 等价无穷小是泰勒公式的一种特殊情况 ) 3.等价无穷小(等价无穷小是泰勒公式的一种特殊情况) 3.等价无穷小(等价无穷小是泰勒公式的一种特殊情况)
s i n x ∼ x , l n ( 1 + x ) ∼ x , t a n x ∼ x , e x − 1 ∼ x a r c s i n x ∼ x , a r c t a n x ∼ x , 1 − c o s x ∼ 1 x 2 , ( 1 + x ) α − 1 ∼ α x \ sinx\sim x,~~ln(1+x)\sim x ,~~tanx\sim x ,~~e^x-1\sim x \\arcsinx\sim x ,~~arctanx\sim x,~~1-cosx\sim \frac{1}{x^2},~~(1+x)^\alpha-1\sim \alpha x sinx∼x, ln(1+x)∼x, tanx∼x, ex−1∼xarcsinx∼x, arctanx∼x, 1−cosx∼x21, (1+x)α−1∼αx
助记 : 名称带有 " 余 " 字,如余弦 c o s 、余割 c s c 、余切 c o t ,求导都带负号 助记:名称带有"余"字,如余弦cos、余割csc、余切cot,求导都带负号 助记:名称带有"余"字,如余弦cos、余割csc、余切cot,求导都带负号
( 1 ) ( C ) ′ = 0 (1)~~~~(C)'=0 (1) (C)′=0
( 2 ) ( x u ) ′ = u x u − 1 (2)~~~~(x^u)'=ux^{u-1} (2) (xu)′=uxu−1
( 3 ) ( s i n x ) ′ = c o s x (3)~~~~(sinx)'=cosx (3) (sinx)′=cosx
( 4 ) ( c o s x ) ′ = − s i n x (4)~~~~(cosx)'=-sinx (4) (cosx)′=−sinx
( 5 ) ( t a n x ) ′ = s e c 2 x = 1 c o s 2 x (5)~~~~(tanx)'=sec^2x=\frac{1}{cos^2x} (5) (tanx)′=sec2x=cos2x1
( 6 ) ( c o t x ) ′ = − c s c 2 x = − 1 s i n 2 x (6)~~~~(cotx)'=-csc^2x=-\frac{1}{sin^2x} (6) (cotx)′=−csc2x=−sin2x1
( 7 ) ( s e c x ) ′ = s e c t a n x (7)~~~~(secx)'=sectanx (7) (secx)′=sectanx
( 8 ) ( c s c x ) ′ = − c s c c o t x (8)~~~~(cscx)'=-csccotx (8) (cscx)′=−csccotx
( 9 ) ( a x ) ′ = a x l n a (9)~~~~(a^x)'=a^xlna (9) (ax)′=axlna
( 10 ) ( e x ) ′ = e x (10)~~~(e^x)'=e^x (10) (ex)′=ex
( 11 ) ( l o g a x ) ′ = 1 x l n a (11)~~~(log_a^x)'=\frac{1}{xlna} (11) (logax)′=xlna1
( 12 ) ( l n x ) ′ = 1 x (12)~~~(lnx)'=\frac{1}{x} (12) (lnx)′=x1
( 13 ) ( a r c s i n x ) ′ = 1 1 − x 2 (13)~~~(arcsinx)'=\frac{1}{\sqrt{1-x^2}} (13) (arcsinx)′=1−x21
( 14 ) ( a r c c o s x ) ′ = − 1 1 − x 2 (14)~~~(arccosx)'=-\frac{1}{\sqrt{1-x^2}} (14) (arccosx)′=−1−x21
( 15 ) ( a r c t a n x ) ′ = 1 1 + x 2 (15)~~~(arctanx)'=\frac{1}{1+x^2} (15) (arctanx)′=1+x21
( 16 ) ( a r c c o t x ) ′ = − 1 1 + x 2 (16)~~~(arccotx)'=-\frac{1}{1+x^2} (16) (arccotx)′=−1+x21
求导组合运算 : 求导组合运算: 求导组合运算:
( 1 ) ( u + v ) ′ = u ′ + v ′ (1)~~~~(u+v)'=u'+v' (1) (u+v)′=u′+v′
( 2 ) ( C u ) ′ = C u ′ (2)~~~~(Cu)'=Cu' (2) (Cu)′=Cu′
( 3 ) ( u v ) ′ = u ′ v + u v ′ (3)~~~~(uv)'=u'v+uv' (3) (uv)′=u′v+uv′
( 4 ) ( u v ) ′ = u ′ v − u v ′ v 2 (4)~~~~(\frac{u}{v})'=\frac{u'v-uv'}{v^2} (4) (vu)′=v2u′v−uv′
推导: 推导:\\~ 推导:
( t a n x ) ′ = ( s i n x c o s x ) ′ = ( s i n x ) ′ c o s x − s i n x ( c o s x ) ′ c o s 2 x = ( c o s 2 x + s i n 2 x ) c o s 2 x = 1 c o s 2 x = s e c 2 x (tanx)'=(\frac{sinx}{cosx})'=\frac{(sinx)'cosx-sinx(cosx)'}{cos^2x}=\frac{(cos^2x+sin^2x)}{cos^2x}=\frac{1}{cos^2x}=sec^2x \\~ (tanx)′=(cosxsinx)′=cos2x(sinx)′cosx−sinx(cosx)′=cos2x(cos2x+sin2x)=cos2x1=sec2x
【简记分母 c o s 2 x , c o t x 为 t a n x 倒数则相反分母 s i n 2 x 】 【简记分母cos^2x,cotx为tanx倒数则相反分母sin^2x】 【简记分母cos2x,cotx为tanx倒数则相反分母sin2x】
奇变偶不变,符号看象限
t a n ( π 2 x + π 2 ) = − c o t π 2 x tan(\frac{\pi}{2}x+\frac{\pi}{2})=-cot\frac{\pi}{2}x \\~ tan(2πx+2π)=−cot2πx
s i n 2 α = 1 − c o s 2 α 2 sin^2\alpha=\frac{1-cos2\alpha}{2} sin2α=21−cos2α
c o s 2 α = 1 + c o s 2 α 2 cos^2\alpha=\frac{1+cos2\alpha}{2} cos2α=21+cos2α
s i n ( α + β ) = s i n α c o s β + c o s α s i n β sin(\alpha+\beta)=sin\alpha cos\beta+cos\alpha sin\beta sin(α+β)=sinαcosβ+cosαsinβ
c o s ( α + β ) = c o s α c o s β + s i n α s i n β cos(\alpha+\beta)=cos\alpha cos\beta+sin\alpha sin\beta cos(α+β)=cosαcosβ+sinαsinβ
二倍角公式 + 万能公式( 2 α → α ) : 二倍角公式+万能公式(2\alpha \rightarrow \alpha): \\~ 二倍角公式+万能公式(2α→α):
s i n 2 α = 2 s i n α c o s α = 2 t a n α 1 + t a n 2 α sin2\alpha=2sin\alpha cos\alpha=\frac{2tan\alpha}{1+tan^2\alpha} sin2α=2sinαcosα=1+tan2α2tanα
c o s 2 α = c o s 2 α − s i n 2 α = 1 − t a n 2 α 1 + t a n 2 α cos2\alpha=cos^2\alpha-sin^2\alpha=\frac{1-tan^2\alpha}{1+tan^2\alpha} cos2α=cos2α−sin2α=1+tan2α1−tan2α
t a n 2 α = 2 t a n α 1 − t a n 2 α tan2\alpha=\frac{2tan\alpha}{1-tan^2\alpha} tan2α=1−tan2α2tanα
角α | 0° | 30° | 45° | 60° | 90° |
---|---|---|---|---|---|
sinα | 0 | 1 2 \frac{1}{2} 21 | 2 2 \frac{\sqrt 2}{2} 22 | 3 2 \frac{\sqrt 3}{2} 23 | 1 |
cosα | 1 | 3 2 \frac{\sqrt 3}{2} 23 | 2 2 \frac{\sqrt 2}{2} 22 | 1 2 \frac{1}{2} 21 | 0 |
tanα | 0 0 0 | 3 3 \frac{\sqrt 3}{3} 33 | 1 1 1 | 3 \sqrt 3 3 | − - − |
裴蜀定理
中国剩余定理
欧几里德算法
欧几里德算法扩展