pytorch---梯度清零zero_grad()的trick

梯度清零zero_grad的trick

  • 1梯度清零------变相增加batchsize
  • 2 梯度清零--------减小运行内存

1梯度清零------变相增加batchsize

  1. 传统的训练函数,一个batch是这么训练的:
for i, (image, label) in enumerate(train_loader):
    # 1. input output
    pred = model(image)
    loss = criterion(pred, label)

    # 2. backward
    optimizer.zero_grad()   # reset gradient
    loss.backward()
    optimizer.step()

  1. 获取 loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
  2. optimizer.zero_grad() 清空过往梯度;
  3. loss.backward() 反向传播,计算当前梯度;
  4. optimizer.step() 根据梯度更新网络参数
    简单的说就是进来一个 batch 的数据,计算一次梯度,更新一次网络
  1. 使用梯度累加是这么写的:
for i,(image, label) in enumerate(train_loader):
    # 1. input output
    pred = model(image)
    loss = criterion(pred, label)

    # 2.1 loss regularization
    loss = loss / accumulation_steps  
 
    # 2.2 back propagation
    loss.backward()

    # 3. update parameters of net
    if (i+1) % accumulation_steps == 0:
        # optimizer the net
        optimizer.step()        # update parameters of net
        optimizer.zero_grad()   # reset gradient
  1. 获取 loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
  2. loss.backward() 反向传播,计算当前梯度;
  3. 多次循环步骤 1-2,不清空梯度,使梯度累加在已有梯度上;
  4. 梯度累加了一定次数后,先optimizer.step() 根据累计的梯度更新网络参数,然后optimizer.zero_grad() 清空过往梯度,为下一波梯度累加做准备;
    总结来说:梯度累加就是,每次获取1个batch的数据,计算1次梯度,梯度不清空,不断累加,累加一定次数后,根据累加的梯度更新网络参数,然后清空梯度,进行下一次循环。一定条件下,batchsize 越大训练效果越好,梯度累加则实现了 batchsize 的变相扩大,如果accumulation_steps 为 8,则batchsize ‘变相’ 扩大了8倍,使用时需要注意,学习率也要适当放大。

2 梯度清零--------减小运行内存

  1. 从内存消耗的角度来看
for idx, data in enumerate(train_loader):
    xs, ys = data
    pred1 = model1(xs)
    pred2 = model2(xs)
    

    loss1 = loss_fn1(pred1, ys)
    loss2 = loss_fn2(pred2, ys)
    
    ******
    loss = loss1 + loss2
    optmizer.zero_grad()
    loss.backward()
    ++++++
    optmizer.step()

从PyTorch的设计原理上来说,在每次进行前向计算得到pred时,会产生一个用于梯度回传的计算图,这张图储存了进行back propagation需要的中间结果,当调用了.backward()后,会从内存中将这张图进行释放上述代码执行到******时,内存中是包含了两张计算图的,而随着求和得到loss,这两张图进行了合并,而且大小的变化可以忽略执行到++++++时,得到对应的grad值并且释放内存。这样,训练时必须存储两张计算图,而如果loss的来源组成更加复杂,内存消耗会更大

  1. 为了减小每次的内存消耗,借助梯度累加,有如下变种
for idx, data in enumerate(train_loader):
    xs, ys = data
    
    optmizer.zero_grad()
    # 计算d(l1)/d(x)
    pred1 = model1(xs) #生成graph1
    loss1 = loss_fn1(pred1, ys)
    loss1.backward()  #释放graph1

    # 计算d(l2)/d(x)
    pred2 = model2(xs)#生成graph2
    loss2 = loss_fn2(pred2, ys)
    loss2.backward()  #释放graph2

    # 使用d(l1)/d(x)+d(l2)/d(x)进行优化
    optmizer.step()

可以从代码中看出,利用梯度累加,可以在最多保存一张计算图的情况下进行multi-task任务的训练。另外一个理由就是在内存大小不够的情况下叠加多个batch的grad作为一个大batch进行迭代,因为二者得到的梯度是等价的综上可知,这种梯度累加的思路是对内存的极大友好,是由FAIR的设计理念出发的

补充:pytorch的一个特点是每一步都是独立功能的操作,因此也就有需要梯度清零的说法,如若不显示的进行optimizer.zero_grad()这一步操作,backward()的时候就会累加梯度

你可能感兴趣的:(pytorch学习,pytorch,深度学习,神经网络)