Shi-Tomasi角点检测算法

文章目录

  • Shi-Tomasi角点检测算法
    • Shi-Tomasi概念
    • API
    • Code
    • 效果

Shi-Tomasi角点检测算法

1、Shi-Tomasi概念;
2、API;
3、Code;

Shi-Tomasi概念

1、角点检测除了Harris角点检测算法外,还常常使用Shi-Tomasi算法,Shi-Tomasi算法是harris算法的改进,因此计算速度更快 , Shi-Tomasi算法于1994年在文章《Good Features to Track》中被提出;

API

1、Shi-Tomasi角点检测API: goodFeatureToTrack():
参数说明:
corners : 为输出角点坐标的集合数组;
qualityLevel : 角点检测的最小特征值,通常不会超过1(常取0.10/0.01);
maxCorners : 自定检测最大角点数目;
k : 常取(0.04-0.06);
Shi-Tomasi角点检测算法_第1张图片

Shi-Tomasi角点检测算法_第2张图片

Code

#include 
#include 
#include 

using namespace cv;
using namespace std;

#define WIN_NAME "Shi-Tomasi角点检测"

Mat srcImage, grayImage;
int maxCornerNumber = 33;
int maxTrackbarNumber = 500;
RNG rng(12345);

void on_GoodFeatureToTrack(int, void *)
{
	if(maxCornerNumber <= 1) 
	{
		maxCornerNumber = 1;
	}
	//Shi-Tomasi参数准备
	vector<Point2f> corners;
	double qualityLevel = 0.01; //角点检测可以接受的最小特征值
	double minDistance = 10; //角点间的最小像素距离设置
	int blockSize = 3;  //计算导数自相关矩阵时指定的领域范围
	double k = 0.04;   //权重系数

	Mat copy = srcImage.clone(); //复制原图到一个临时变量中,作为感兴趣区域
	//Shi-Tomasi Test
	goodFeaturesToTrack(grayImage, corners, maxCornerNumber, qualityLevel, minDistance, Mat(), blockSize, false, k);

	//输出文字信息
	cout << ">此次检测到的角点数量为: " << corners.size() << endl;

	//绘制检测到的角点
	for (unsigned int i = 0; i < corners.size(); i++)
	{
		circle(copy, corners[i], 5, Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)), -1, 8, 0);
	}

	imshow(WIN_NAME, copy);
}

int main(int argc, char** argv)
{
	srcImage = imread("C:\\Users\\hello\\Desktop\\3.jpg");
	cvtColor(srcImage, grayImage, CV_BGR2GRAY);

	namedWindow(WIN_NAME, WINDOW_AUTOSIZE);
	
	createTrackbar("最大角点数:", WIN_NAME, &maxCornerNumber, maxTrackbarNumber, on_GoodFeatureToTrack);
	
	//imshow(WIN_NAME, srcImage);

	
	on_GoodFeatureToTrack(0, 0);


	waitKey(0);
	return 0;
}

效果

计算速度比Harris快了很多!!!Shi-Tomasi算法可以简单输出角点的坐标点

Shi-Tomasi角点检测算法_第3张图片
识别角点,并输出像素值坐标:

Shi-Tomasi角点检测算法_第4张图片

你可能感兴趣的:(OpenCV3编程入门,opencv)