LeetCode - Sudoku Solver

Sudoku Solver

2014.2.28 21:30

Write a program to solve a Sudoku puzzle by filling the empty cells.

Empty cells are indicated by the character '.'.

You may assume that there will be only one unique solution.

A sudoku puzzle...

...and its solution numbers marked in red.

Solution:

  My solution to this problem is by DFS and backtracking. The difference is that I added some optimization strategies to the program:

    1. [7][6] can be represented as [7 * 9 + 6], you don't have to calculate it every time, store the coordinates in an array instead.

    2. [69] can be represented as [69 / 9][69 % 9], you don't have to calculate it every time, becasue '/' and '%' are expensive operators.

    3. When you've filled in a blank, where is the next blank to fill? You can find the next blank in O(1) time, instead of scanning the whole board.

    4. When one attempt failed, how do you backtrack efficiently? With a <vector>, pop_back() and push_back() is a good choice.

  The Dancing Links Algorithm seems to be a very exquisite way to solve Sudoku, but here it might be way too complicated for an interview question. Perhaps I'm just too lazy to learn it, spare me~(>_<)

  Total time complexity is O((n^2)!), but it would never appear that large. Space complexity is O(n^2).

Accepted code:

  1 // 1AC, very well, avoiding too much '/' and '%' will speed up the program.

  2 #include <cmath>

  3 #include <vector>

  4 using namespace std;

  5 

  6 class Solution {

  7 public:

  8     void solveSudoku(vector<vector<char> > &board) {

  9         n2 = (int)board.size();

 10         if (n2 == 0) {

 11             return;

 12         } else if (n2 == 1) {

 13             board[0][0] = '1';

 14             return;

 15         }

 16         

 17         n = (int)sqrt(1.0 * n2);

 18         n4 = n2 * n2;

 19         

 20         int i, j;

 21         row.resize(n2);

 22         for (i = 0; i < n2; ++i) {

 23             row[i].resize(n2);

 24         }

 25         col.resize(n2);

 26         for (i = 0; i < n2; ++i) {

 27             col[i].resize(n2);

 28         }

 29         block.resize(n2);

 30         for (i = 0; i < n2; ++i) {

 31             block[i].resize(n2);

 32         }

 33         bc.resize(n2);

 34         for (i = 0; i < n2; ++i) {

 35             bc[i].resize(n2);

 36         }

 37         row_coordinate.resize(n4);

 38         col_coordinate.resize(n4);

 39         for (i = 0; i < n4; ++i) {

 40             row_coordinate[i] = i / n2;

 41             col_coordinate[i] = i % n2;

 42         }

 43         

 44         for (i = 0; i < n2; ++i) {

 45             for (j = 0; j < n2; ++j) {

 46                 row[i][j] = col[i][j] = block[i][j] = 0;

 47             }

 48         }

 49         

 50         for (i = 0; i < n2; ++i) {

 51             for (j = 0; j < n2; ++j) {

 52                 bc[i][j] = i / n * n + j / n;

 53             }

 54         }

 55         

 56         cc = 0;

 57         for (i = 0; i < n2; ++i) {

 58             for (j = 0; j < n2; ++j) {

 59                 if (board[i][j] != '.') {

 60                     // it is a digit

 61                     row[i][board[i][j] - '1'] = 1;

 62                     col[j][board[i][j] - '1'] = 1;

 63                     block[bc[i][j]][board[i][j] - '1'] = 1;

 64                 } else {

 65                     empty_slots.push_back(i * n2 + j);

 66                     ++cc;

 67                 }

 68             }

 69         }

 70         

 71         suc = false;

 72         dfs(board);

 73         

 74         // perform cleanup operations

 75         for (i = 0; i < n2; ++i) {

 76             row[i].clear();

 77             col[i].clear();

 78             block[i].clear();

 79             bc[i].clear();

 80         }

 81         row.clear();

 82         col.clear();

 83         block.clear();

 84         bc.clear();

 85         empty_slots.clear();

 86         row_coordinate.clear();

 87         col_coordinate.clear();

 88     }

 89 private:

 90     bool suc;

 91     int n, n2, n4;

 92     int cc;

 93     vector<vector<int> > row, col, block;

 94     vector<vector<int> > bc;

 95     vector<int> empty_slots;

 96     vector<int> row_coordinate, col_coordinate;

 97     

 98     void dfs(vector<vector<char> > &board) {

 99         if (suc) {

100             return;

101         }

102         if (cc == 0) {

103             suc = true;

104             return;

105         }

106 

107         int r, c;

108         int i;

109 

110         r = row_coordinate[empty_slots[cc - 1]];

111         c = col_coordinate[empty_slots[cc - 1]];

112         for (i = 0; i < n2; ++i) {

113             if (row[r][i] || col[c][i] || block[bc[r][c]][i]) {

114                 continue;

115             }

116             row[r][i] = 1;

117             col[c][i] = 1;

118             block[bc[r][c]][i] = 1;

119             empty_slots.pop_back();

120             --cc;

121             board[r][c] = (i + '1');

122             

123             dfs(board);

124             if (suc) {

125                 return;

126             }

127             

128             row[r][i] = 0;

129             col[c][i] = 0;

130             block[bc[r][c]][i] = 0;

131             empty_slots.push_back(r * n2 + c);

132             ++cc;

133             board[r][c] = '.';

134         }

135     }

136 };

 

你可能感兴趣的:(LeetCode)