统计一张图片(二值化后)中的白色像素点占比

#include "opencv2/highgui/highgui.hpp"  
#include "opencv2/imgproc/imgproc.hpp"  
#include "opencv2/core/core.hpp"
#include 
#include 
#include "cv.h"
#include "highgui.h"
#include 
#include 
#include 
#include 
using namespace std;
using namespace cv;
//统计一幅图片中白色像素点和黑色像素点占整幅图的比例

int bSums(Mat src)
{

	int counter = 0;
	int black = 0;
	int n = 0;
	//迭代器访问像素点
	Mat_::iterator it = src.begin();
	Mat_::iterator itend = src.end();
	for (; it != itend; ++it)
	{ 
		n++;
		if ((*it) > 0)
		{
			counter += 1;//二值化后,像素点是0或者255
		}
		else {
			black += 1;
		}
	}
	double biliB = counter*1.0/n*1.0*100*1.0;
	double biliH = black*1.0/n*1.0*100*1.0;
	cout << "counter:"  << counter  << endl;
	cout << "black:" << black << endl;
	cout << "n:" << n << endl;
	cout << "biliB:" << biliB << endl;
	cout << "biliH:" << biliH << endl;
	return counter;
}
int main(int agrc,char** agrv)
{
	Mat imgPath = imread("D://XR//811416.jpg");//读取源图
	//namedWindow("原图", 0);
	//resizeWindow("原图", 500, 500);
	imshow("原图", imgPath);
	
	Mat a1;
	cvtColor(imgPath, a1, COLOR_BGR2GRAY);//转灰度图
	//namedWindow("灰度", 0);
	//resizeWindow("灰度", 500, 500);
	imshow("灰度", a1);

	Mat a2;
	threshold(a1, a2, 0, 255, THRESH_BINARY | THRESH_OTSU);//二值化
	//namedWindow("灰度", 0);
	//resizeWindow("灰度", 500, 500);
	imshow("灰度", a2);

	int a = bSums(a2);//调用函数bSums
	imshow("A", a2);
	//cout << "A:" << a;
	waitKey();
	return 0;
}

 

你可能感兴趣的:(opencv学习笔记)