一开始是用默认的anchor配置训练的,可视化分析后,对于特别扁的目标效果明显不好。于是研究了一下配置文件中的这3个参数。默认高宽比是1:2、1:1、2:1。而我的场景会出现1:20的目标,显然不合适要调整。
scales=[8], # 共1*3=3种base_anchors,面积是一样的,
ratios=[0.5, 1.0, 2.0], # 高宽比,1.0表示8*8的大小
strides=[4, 8, 16, 32, 64]), # 5种尺度的anchor strides,对应于原图的比例
可以用labelme或labelimg标注数据,基于标注数据聚类。注意设置CLUSTERS和SIZE两个参数。
import glob
import xml.etree.ElementTree as ET
import json
import numpy as np
from kmeans import kmeans, avg_iou
# ANNOTATIONS_PATH = r"mydata/train/xmls"
ANNOTATIONS_PATH = r"mydata/labels"
CLUSTERS = 4 # anchor数量
SIZE = 1333 # 训练尺寸
def load_dataset_xlm(path):
dataset = []
for xml_file in glob.glob("{}/*xml".format(path)):
tree = ET.parse(xml_file)
height = int(tree.findtext("./size/height"))
width = int(tree.findtext("./size/width"))
for obj in tree.iter("object"):
xmin = int(obj.findtext("bndbox/xmin")) / width
ymin = int(obj.findtext("bndbox/ymin")) / height
xmax = int(obj.findtext("bndbox/xmax")) / width
ymax = int(obj.findtext("bndbox/ymax")) / height
min_size = 5
dataset.append([xmax - xmin, ymax - ymin])
if (ymax - ymin)*height < min_size or (xmax - xmin)*width < min_size:
print('err!!!!',xml_file)
# print(dataset)
return np.array(dataset)
def load_dataset_labelme(path):
dataset = []
files = glob.glob('{}/*json'.format(path))
for file_path in files:
with open(file_path, 'r') as f:
info = json.load(f)
height = info['imageHeight']
width = info['imageWidth']
for pol in info['shapes']:
x = [i[0] for i in pol['points']]
y = [i[1] for i in pol['points']]
xmin = int(min(x)) / width
ymin = int(min(y)) / height
xmax = int(max(x)) / width
ymax = int(max(y)) / height
dataset.append([xmax - xmin, ymax - ymin])
return np.array(dataset)
# 加载标注文件
# data = load_dataset_xlm(ANNOTATIONS_PATH)
data = load_dataset_labelme(ANNOTATIONS_PATH)
out = kmeans(data, k=CLUSTERS) # 聚类中心
out_list = out.tolist()
res = sorted(out_list, key=(lambda x:x[0] * x[1]))
out = np.array(res)
print("Accuracy: {:.2f}%".format(avg_iou(data, out) * 100)) # 表征一个框上能覆盖多少比例,所有框的iou平均值
print("Boxes:\n {}".format(out * SIZE)) # size=640上的anchor 长宽
print("Boxes:\n {}-{}".format(out[:, 0] * SIZE, out[:, 1] * SIZE)) # 上一个print换一种表方法,不用care
# ratios = np.around(out[:, 0] / out[:, 1], decimals=2).tolist()
ratios = np.around(out[:, 1] / out[:, 0], decimals=2).tolist() # mmdet中是高宽比
print("Ratios:\n {}".format(sorted(ratios))) # 长宽比
kmeans.py
import numpy as np
def iou(box, clusters):
"""
Calculates the Intersection over Union (IoU) between a box and k clusters.
:param box: tuple or array, shifted to the origin (i. e. width and height)
:param clusters: numpy array of shape (k, 2) where k is the number of clusters
:return: numpy array of shape (k, 0) where k is the number of clusters
"""
x = np.minimum(clusters[:, 0], box[0])
y = np.minimum(clusters[:, 1], box[1])
if np.count_nonzero(x == 0) > 0 or np.count_nonzero(y == 0) > 0:
raise ValueError("Box has no area")
intersection = x * y
box_area = box[0] * box[1]
cluster_area = clusters[:, 0] * clusters[:, 1]
iou_ = intersection / (box_area + cluster_area - intersection)
return iou_
def avg_iou(boxes, clusters):
"""
Calculates the average Intersection over Union (IoU) between a numpy array of boxes and k clusters.
:param boxes: numpy array of shape (r, 2), where r is the number of rows
:param clusters: numpy array of shape (k, 2) where k is the number of clusters
:return: average IoU as a single float
"""
return np.mean([np.max(iou(boxes[i], clusters)) for i in range(boxes.shape[0])])
def translate_boxes(boxes):
"""
Translates all the boxes to the origin.
:param boxes: numpy array of shape (r, 4)
:return: numpy array of shape (r, 2)
"""
new_boxes = boxes.copy()
for row in range(new_boxes.shape[0]):
new_boxes[row][2] = np.abs(new_boxes[row][2] - new_boxes[row][0])
new_boxes[row][3] = np.abs(new_boxes[row][3] - new_boxes[row][1])
return np.delete(new_boxes, [0, 1], axis=1)
def kmeans(boxes, k, dist=np.median):
"""
Calculates k-means clustering with the Intersection over Union (IoU) metric.
:param boxes: numpy array of shape (r, 2), where r is the number of rows
:param k: number of clusters
:param dist: distance function
:return: numpy array of shape (k, 2)
"""
# print(boxes)
print('k=',k)
rows = boxes.shape[0]
print('rows=',rows)
distances = np.empty((rows, k))
last_clusters = np.zeros((rows,))
np.random.seed(111)
# the Forgy method will fail if the whole array contains the same rows
a=np.random.choice(rows, k, replace=False)
print('a=',a)
clusters = boxes[a]
print('clusters=',clusters)
while True:
for row in range(rows):
# print(boxes[row])
distances[row] = 1 - iou(boxes[row], clusters)
nearest_clusters = np.argmin(distances, axis=1) # 每一个框和哪个anchor最接近
# print(nearest_clusters,nearest_clusters.shape)
if (last_clusters == nearest_clusters).all(): # anchor稳定了
break
for cluster in range(k): # 用中值做聚类中心
clusters[cluster] = dist(boxes[nearest_clusters == cluster], axis=0)
last_clusters = nearest_clusters
return clusters
统计不同CLUSTERS数量下的Accuracy,CLUSTERS越大Accuracy越接近100%,根据CLUSTERS增大时准确率的增益情况,主观选择一个CLUSTERS。获得此时的Boxes和Ratios,注意你的模型是高宽比还是宽高比,在mmdet中是高宽比。
获得Boxes和Ratios后,需要设置scales大小。可用以下代码实验性获得合适的scales。
import math
anchor_stride = 16 # 模型固有的,可选范围[4, 8, 16, 32, 64]
anchor_ratios = 0.1 # 计算出的高宽比ratio=h/w [0.05, 0.09, 0.22, 0.6]
anchor_scales = 14 # 需要自己设置的超参数,对每个ratio,选择合适的stride,尝试合适的scales,使最后生成的box接近聚类统计结果
w = anchor_stride
h = anchor_stride
h_ratios = math.sqrt(anchor_ratios)
w_ratios = 1 / h_ratios
# h_ratios/w_ratios = anchor_ratios
print(w_ratios,h_ratios)
ws = (w * w_ratios* anchor_scales)
hs = (h * h_ratios * anchor_scales)
print(ws,hs)
关于mmdet的anchor实现可参看另一篇笔记《基于MMdet的Cascade MASKRCNN 原理及源码解读》