pytorch二维码识别

二维码图片的生成

利用captcha可以生成二维码图片

# -*- coding: UTF-8 -*-
from captcha.image import ImageCaptcha  # pip install captcha
from PIL import Image
import random
import time
import os
# 验证码中的字符
# string.digits + string.ascii_uppercase
NUMBER = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']

ALL_CHAR_SET = NUMBER + ALPHABET  #验证码所有的字符和数字
ALL_CHAR_SET_LEN = len(ALL_CHAR_SET)
MAX_CAPTCHA = 12 #每个验证码字符个数

# 图像大小
IMAGE_HEIGHT = 60
IMAGE_WIDTH = 160

train_path = 'dataset' + os.path.sep + 'train'
test_path = 'dataset' + os.path.sep + 'test'
predict_path = 'dataset' + os.path.sep + 'predict'

def random_captcha():
    #生成随机字符串
    captcha_text = []
    for i in range(MAX_CAPTCHA):
        c = random.choice(ALL_CHAR_SET)
        captcha_text.append(c)
    return ''.join(captcha_text)

# 生成字符对应的验证码
def gen_captcha_text_and_image():
    image = ImageCaptcha()
    captcha_text = random_captcha()
    #通过随机字符串生成二维码图片
    captcha_image = Image.open(image.generate(captcha_text))
    return captcha_text, captcha_image

if __name__ == '__main__':
    count = 300  #生成二维码的个数
    path = train_path    #通过改变此处目录,以生成 训练、测试和预测用的验证码集
    if not os.path.exists(path):
        os.makedirs(path)
    for i in range(count):
        now = str(int(time.time()))
        text, image = gen_captcha_text_and_image()
        filename = text+'_'+str(i)+'.png'
        #保存二维码图片
        image.save(path  + os.path.sep +  filename)
        print('saved %d : %s' % (i+1,filename))

dataset

# -*- coding: UTF-8 -*-
import os
import random

from torch.utils.data import DataLoader,Dataset
import torchvision.transforms as transforms
from PIL import Image
import one_hot_encoding as ohe
import captcha_setting

class mydataset(Dataset):

    def __init__(self, folder, transform=None):
        self.train_image_file_paths = [os.path.join(folder, image_file) for image_file in os.listdir(folder)]
        self.transform = transform

    def __len__(self):
        return len(self.train_image_file_paths)

    def __getitem__(self, idx):
        image_root = self.train_image_file_paths[idx]
        image_name = image_root.split(os.path.sep)[-1]
        image = Image.open(image_root)
        if self.transform is not None:
            image = self.transform(image)
        label = ohe.encode(image_name.split('_')[0]) # 为了方便,在生成图片的时候,图片文件的命名格式 "4个数字或者数字_时间戳.PNG", 4个字母或者即是图片的验证码的值,字母大写,同时对该值做 one-hot 处理
        return image, label

transform = transforms.Compose([
    transforms.ColorJitter(),
    # transforms.Grayscale(),
    transforms.ToTensor(),
    # transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def get_train_data_loader():

    dataset = mydataset(captcha_setting.TRAIN_DATASET_PATH, transform=transform)
    return DataLoader(dataset, batch_size=64, shuffle=True)

def get_test_data_loader():
    dataset = mydataset(captcha_setting.TEST_DATASET_PATH, transform=transform)
    return DataLoader(dataset, batch_size=1, shuffle=True)

def get_predict_data_loader():
    dataset = mydataset(captcha_setting.PREDICT_DATASET_PATH, transform=transform)
    return DataLoader(dataset, batch_size=1, shuffle=True)

if __name__=="__main__":
    from matplotlib import pyplot as plt
    dataset=mydataset('./dataset/train',transform=transform)
    indexes=random.sample(range(len(dataset)-1),16)
    image,label=dataset[0]

    for i,index in enumerate(indexes):
        image,label=dataset[index]
        image=transforms.ToPILImage()(image)
        plt.subplot(4,4,i+1)
        plt.title(ohe.decode(label))
        plt.xticks([])
        plt.yticks([])
        plt.imshow(image)
    plt.show()

pytorch二维码识别_第1张图片

pytorch二维码识别_第2张图片 one-hot编码

# -*- coding: UTF-8 -*-
import numpy as np
import captcha_setting

def encode(text):
    vector = np.zeros(captcha_setting.ALL_CHAR_SET_LEN * captcha_setting.MAX_CAPTCHA, dtype=float)
    #每个字符都需要进行编码.
    #每个字符都需要在字典中查询得到,所有变量的维度是  *max_captcha
    def char2pos(c):
        if c =='_':
            k = 62
            return k
        k = ord(c)-48
        #将acii码转换为字符
        # hh=chr(k+48)
        if k > 9:
            k = ord(c) - 65 + 10
            if k > 35:
                k = ord(c) - 97 + 26 + 10
                if k > 61:
                    raise ValueError('error')
        return k
    for i, c in enumerate(text):
        idx = i * captcha_setting.ALL_CHAR_SET_LEN + char2pos(c)
        vector[idx] = 1.0
    return vector

def decode(vec):
    char_pos = vec.nonzero()[0]
    text=[]
    for i, c in enumerate(char_pos):
        char_at_pos = i #c/63
        char_idx = c % captcha_setting.ALL_CHAR_SET_LEN
        if char_idx < 10:
            char_code = char_idx + ord('0')
        elif char_idx <36:
            char_code = char_idx - 10 + ord('A')
        elif char_idx < 62:
            char_code = char_idx - 36 + ord('a')
        elif char_idx == 62:
            char_code = ord('_')
        else:
            raise ValueError('error')
        text.append(chr(char_code))
    return "".join(text)

if __name__ == '__main__':
    e = encode("9L7H")
    print(e)
    print(decode(e))

[0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
9L7H

模型

# -*- coding: UTF-8 -*-
import torch.nn as nn
import captcha_setting

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 32, kernel_size=3, padding=1),
            nn.BatchNorm2d(32),
            nn.Dropout(0.5),  # drop 50% of the neuron
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.layer2 = nn.Sequential(
            nn.Conv2d(32, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.Dropout(0.5),  # drop 50% of the neuron
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.layer3 = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.Dropout(0.5),  # drop 50% of the neuron
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.fc = nn.Sequential(
            nn.Linear((captcha_setting.IMAGE_WIDTH//8)*(captcha_setting.IMAGE_HEIGHT//8)*64, 1024),
            nn.Dropout(0.5),  # drop 50% of the neuron
            nn.ReLU())
        self.rfc = nn.Sequential(
            nn.Linear(1024, captcha_setting.MAX_CAPTCHA*captcha_setting.ALL_CHAR_SET_LEN),
        )

    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = self.layer3(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        out = self.rfc(out)
        return out
if __name__=='__main__':
    import torch
    model=CNN()
    input=torch.randn(1,1,60,160)
    gt_output=torch.randn(1,144)
    output=model(input)
    print('输出的向量大小',output.shape)

    criterion = nn.MultiLabelSoftMarginLoss()
    loss=criterion(gt_output,output)
    print('损失的大小',loss.data)

 输出的向量大小 torch.Size([1, 144])
损失的大小 tensor(0.7603)

模型的训练

# -*- coding: UTF-8 -*-
import torch
import torch.nn as nn
from torch.autograd import Variable
import my_dataset
from captcha_cnn_model import CNN

# Hyper Parameters
num_epochs = 30
batch_size = 100
learning_rate = 0.001

def main():
    cnn = CNN()
    cnn.train()
    print('init net')
    criterion = nn.MultiLabelSoftMarginLoss()
    optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate)

    # Train the Model
    train_dataloader = my_dataset.get_train_data_loader()
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(train_dataloader):
            images = Variable(images)
            labels = Variable(labels.float())
            predict_labels = cnn(images)
            loss = criterion(predict_labels, labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if (i+1) % 10 == 0:
                print("epoch:", epoch, "step:", i, "loss:", loss.item())
            if (i+1) % 100 == 0:
                torch.save(cnn.state_dict(), "./model.pkl")   #current is model.pkl
                print("save model")
        print("epoch:", epoch, "step:", i, "loss:", loss.item())
    torch.save(cnn.state_dict(), "./model.pth")
    print("save last model")

if __name__ == '__main__':
    main()


 init net
epoch: 0 step: 4 loss: 0.38898029923439026
epoch: 1 step: 4 loss: 0.19714970886707306
epoch: 2 step: 4 loss: 0.15116369724273682
epoch: 3 step: 4 loss: 0.1429138034582138
epoch: 4 step: 4 loss: 0.1360236257314682
epoch: 5 step: 4 loss: 0.12835916876792908
epoch: 6 step: 4 loss: 0.1267365664243698
epoch: 7 step: 4 loss: 0.12457828223705292
epoch: 8 step: 4 loss: 0.12483084201812744
epoch: 9 step: 4 loss: 0.11893215030431747
epoch: 10 step: 4 loss: 0.11814623326063156
epoch: 11 step: 4 loss: 0.11591014266014099
epoch: 12 step: 4 loss: 0.11125991493463516
epoch: 13 step: 4 loss: 0.10649068653583527
epoch: 14 step: 4 loss: 0.10284445434808731
epoch: 15 step: 4 loss: 0.10144951194524765
epoch: 16 step: 4 loss: 0.0985511839389801
epoch: 17 step: 4 loss: 0.08964875340461731
epoch: 18 step: 4 loss: 0.08870525658130646
epoch: 19 step: 4 loss: 0.0839766412973404
epoch: 20 step: 4 loss: 0.0823589637875557
epoch: 21 step: 4 loss: 0.07506724447011948
epoch: 22 step: 4 loss: 0.06370603293180466
epoch: 23 step: 4 loss: 0.06234220042824745
epoch: 24 step: 4 loss: 0.06265763193368912
epoch: 25 step: 4 loss: 0.05445406585931778
epoch: 26 step: 4 loss: 0.05590423569083214
epoch: 27 step: 4 loss: 0.0482553206384182
epoch: 28 step: 4 loss: 0.04553262144327164
epoch: 29 step: 4 loss: 0.03754893317818642
save last model

模型的测试

# -*- coding: UTF-8 -*-
import numpy as np
import torch
from torch.autograd import Variable
import captcha_setting
import my_dataset
from captcha_cnn_model import CNN
import one_hot_encoding

def main():
    cnn = CNN()
    cnn.eval()
    cnn.load_state_dict(torch.load('model.pth'))
    print("load cnn net.")

    test_dataloader = my_dataset.get_test_data_loader()

    correct = 0
    total = 0
    for i, (images, labels) in enumerate(test_dataloader):
        image = images
        vimage = Variable(image)
        predict_label = cnn(vimage)

        c0 = captcha_setting.ALL_CHAR_SET[np.argmax(predict_label[0, 0:captcha_setting.ALL_CHAR_SET_LEN].data.numpy())]
        c1 = captcha_setting.ALL_CHAR_SET[np.argmax(predict_label[0, captcha_setting.ALL_CHAR_SET_LEN:2 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())]
        c2 = captcha_setting.ALL_CHAR_SET[np.argmax(predict_label[0, 2 * captcha_setting.ALL_CHAR_SET_LEN:3 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())]
        c3 = captcha_setting.ALL_CHAR_SET[np.argmax(predict_label[0, 3 * captcha_setting.ALL_CHAR_SET_LEN:4 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())]
        predict_label = '%s%s%s%s' % (c0, c1, c2, c3)
        true_label = one_hot_encoding.decode(labels.numpy()[0,:])
        total += labels.size(0)
        if(predict_label == true_label):
            correct += 1
        if(total%200==0):
            print('Test Accuracy of the model on the %d test images: %f %%' % (total, 100 * correct / total))
    print('Test Accuracy of the model on the %d test images: %f %%' % (total, 100 * correct / total))

if __name__ == '__main__':
    main()


 

 

你可能感兴趣的:(pytorch,python,深度学习)