##取每一列
for i in range(len(X[0])):
list1=[example[i] for example in X]
列表中extend和append的区别
list.append(object) 向列表中添加一个对象object
list.extend(sequence) 把一个序列seq的内容添加到列表中
1、使用append的时候,是将new_media看作一个对象,整体打包添加到music_media对象中。
2、使用extend的时候,是将new_media看作一个序列,将这个序列和music_media序列合并,并放在其后面。
result = []
result.extend([1,2,3])
print result
result.append([4,5,6])
print result
result.extend([7,8,9])
print result
结果:
[1, 2, 3]
[1, 2, 3, [4, 5, 6]]
[1, 2, 3, [4, 5, 6], 7, 8, 9]
import operator
dict={'x':2,'y':1,'z':3}
dict["x"]
2
b=sorted(dict,key=operator.itemgetter(0))
b
['x', 'y', 'z']
c=sorted(dict,key=operator.itemgetter(1))
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-32-59bd49e47d1d> in <module>
----> 1 c=sorted(dict,key=operator.itemgetter(1))
IndexError: string index out of range
c=sorted(dict.items(),key=operator.itemgetter(1))
c
[('y', 1), ('x', 2), ('z', 3)]
d=sorted(dict.items(),key=operator.itemgetter(0))
d
[('x', 2), ('y', 1), ('z', 3)]
加入要使用key=operator.itemgetter
,那么就需要导入operator的包
在排序时,关注第一个参数dict
和dict.items()
的区别
熵(entropy): 熵指的是体系的混乱的程度,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。
信息论(information theory)中的熵(香农熵): 是一种信息的度量方式,表示信息的混乱程度,也就是说: 信息越有序,信息熵越低。例如: 火柴有序放在火柴盒里,熵值很低
信息增益(information gain): 在划分数据集前后信息发生的变化称为信息增益。
优点: 计算复杂度不高,输出结果易于理解,数据有缺失也能跑,可以处理不相关特征。
缺点: 容易过拟合。
适用数据类型: 数值型和标称型。
标称型:离散值,标称型目标变量的结果只在有限目标集中取值,比如真与假(标称型目标变量主要用于分类)
数值型:连续值,数值型目标变量则可以从无限的数值集合中取值,如0.555,666.666等 (数值型目标变量主要用于回归分析)
项目概述
根据以下 2 个特征,将动物分成两类: 鱼类和非鱼类。
特征:
from __future__ import print_function
import operator
from math import log
import decisionTreePlot as dtPlot ##这是自己写的可视化
from collections import Counter
def createDataSet():
"""DateSet 基础数据集
Args:
无需传入参数
Returns:
返回数据集和对应的label标签
"""
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
# dataSet = [['yes'],
# ['yes'],
# ['no'],
# ['no'],
# ['no']]
# labels 露出水面 脚蹼
labels = ['no surfacing', 'flippers']
# change to discrete values
return dataSet, labels
def calcShannonEnt(dataSet):
"""calcShannonEnt(calculate Shannon entropy 计算给定数据集的香农熵)
Args:
dataSet 数据集
Returns:
返回 每一组feature下的某个分类下,香农熵的信息期望
"""
# -----------计算香农熵的第一种实现方式start--------------------------------------------------------------------------------
# 求list的长度,表示计算参与训练的数据量
numEntries = len(dataSet) ##如果dataSet是个矩阵的话,len求的是行数
# 下面输出我们测试的数据集的一些信息
# 例如: numEntries: 5 是下面的代码的输出
# print type(dataSet), 'numEntries: ', numEntries
# 计算分类标签label出现的次数
labelCounts = {}
# the number of unique elements and their occurance
for featVec in dataSet:
# 将当前实例的标签存储,即每一行数据的最后一个数据代表的是标签
currentLabel = featVec[-1]
# 为所有可能的分类创建字典,如果当前的键值不存在,则扩展字典并将当前键值加入字典。每个键值都记录了当前类别出现的次数。
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
# 对于label标签的占比,求出label标签的香农熵
shannonEnt = 0.0
for key in labelCounts:
# 使用所有类标签的发生频率计算类别出现的概率。
prob = float(labelCounts[key]) / numEntries
# 计算香农熵,以 2 为底求对数
shannonEnt -= prob * log(prob, 2)
# -----------计算香农熵的第一种实现方式end--------------------------------------------------------------------------------
# # -----------计算香农熵的第二种实现方式start--------------------------------------------------------------------------------
# # 统计标签出现的次数
# label_count = Counter(data[-1] for data in dataSet)
# # 计算概率
# probs = [p[1] / len(dataSet) for p in label_count.items()]
# # 计算香农熵
# shannonEnt = sum([-p * log(p, 2) for p in probs])
# # -----------计算香农熵的第二种实现方式end--------------------------------------------------------------------------------
return shannonEnt
def splitDataSet(dataSet, index, value):
"""splitDataSet(通过遍历dataSet数据集,求出index对应的colnum列的值为value的行)
就是依据index列进行分类,如果index列的数据等于 value的时候,就要将 index 划分到我们创建的新的数据集中
Args:
dataSet 数据集 待划分的数据集
index 表示每一行的index列 划分数据集的特征
value 表示index列对应的value值 需要返回的特征的值。
Returns:
index列为value的数据集【该数据集需要排除index列】
"""
# -----------切分数据集的第一种方式 start------------------------------------
retDataSet = []
for featVec in dataSet:
# index列为value的数据集【该数据集需要排除index列】
# 判断index列的值是否为value
if featVec[index] == value:
# chop out index used for splitting
# [:index]表示前index行,即若 index 为2,就是取 featVec 的前 index 行
reducedFeatVec = featVec[:index]
reducedFeatVec.extend(featVec[index + 1:])
# [index+1:]表示从跳过 index 的 index+1行,取接下来的数据
# 收集结果值 index列为value的行【该行需要排除index列】
retDataSet.append(reducedFeatVec)
# -----------切分数据集的第一种方式 end------------------------------------
# # -----------切分数据集的第二种方式 start------------------------------------
# retDataSet = [data for data in dataSet for i, v in enumerate(data) if i == axis and v == value]
# # -----------切分数据集的第二种方式 end------------------------------------
return retDataSet
def chooseBestFeatureToSplit(dataSet):
"""chooseBestFeatureToSplit(选择最好的特征)
Args:
dataSet 数据集
Returns:
bestFeature 最优的特征列
"""
# -----------选择最优特征的第一种方式 start------------------------------------
# 求第一行有多少列的 Feature, 最后一列是label列嘛
numFeatures = len(dataSet[0]) - 1
# label的信息熵
baseEntropy = calcShannonEnt(dataSet)
# 最优的信息增益值, 和最优的Featurn编号
bestInfoGain, bestFeature = 0.0, -1
# iterate over all the features
for i in range(numFeatures):
# create a list of all the examples of this feature
# 获取每一个feature下的所有数据,组成list集合
featList = [example[i] for example in dataSet]
# get a set of unique values
# 获取剔重后的集合,使用set对list数据进行去重
uniqueVals = set(featList)
# 创建一个临时的信息熵
newEntropy = 0.0
# 遍历某一列的value集合,计算该列的信息熵
# 遍历当前特征中的所有唯一属性值,对每个唯一属性值划分一次数据集,计算数据集的新熵值,并对所有唯一特征值得到的熵求和。
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet) / float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
# gain[信息增益]: 划分数据集前后的信息变化, 获取信息熵最大的值
# 信息增益是熵的减少或者是数据无序度的减少。最后,比较所有特征中的信息增益,返回最好特征划分的索引值。
infoGain = baseEntropy - newEntropy
print('infoGain=', infoGain, 'bestFeature=', i, baseEntropy, newEntropy)
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature
# -----------选择最优特征的第一种方式 end------------------------------------
# # -----------选择最优特征的第二种方式 start------------------------------------
# # 计算初始香农熵
# base_entropy = calcShannonEnt(dataSet)
# best_info_gain = 0
# best_feature = -1
# # 遍历每一个特征
# for i in range(len(dataSet[0]) - 1):
# # 对当前特征进行统计
# feature_count = Counter([data[i] for data in dataSet])
# # 计算分割后的香农熵
# new_entropy = sum(feature[1] / float(len(dataSet)) * calcShannonEnt(splitDataSet(dataSet, i, feature[0])) \
# for feature in feature_count.items())
# # 更新值
# info_gain = base_entropy - new_entropy
# print('No. {0} feature info gain is {1:.3f}'.format(i, info_gain))
# if info_gain > best_info_gain:
# best_info_gain = info_gain
# best_feature = i
# return best_feature
# # -----------选择最优特征的第二种方式 end------------------------------------
def majorityCnt(classList):
"""majorityCnt(选择出现次数最多的一个结果)
Args:
classList label列的集合
Returns:
bestFeature 最优的特征列
"""
# -----------majorityCnt的第一种方式 start------------------------------------
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
# 倒叙排列classCount得到一个字典集合,然后取出第一个就是结果(yes/no),即出现次数最多的结果
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
# print 'sortedClassCount:', sortedClassCount
return sortedClassCount[0][0]
# -----------majorityCnt的第一种方式 end------------------------------------
# # -----------majorityCnt的第二种方式 start------------------------------------
# major_label = Counter(classList).most_common(1)[0]
# return major_label
# # -----------majorityCnt的第二种方式 end------------------------------------
def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
# 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行
# 第一个停止条件: 所有的类标签完全相同,则直接返回该类标签。
# count() 函数是统计括号中的值在list中出现的次数
if classList.count(classList[0]) == len(classList):
return classList[0]
# 如果数据集只有1列,那么最初出现label次数最多的一类,作为结果
# 第二个停止条件: 使用完了所有特征,仍然不能将数据集划分成仅包含唯一类别的分组。
if len(dataSet[0]) == 1:
return majorityCnt(classList)
# 选择最优的列,得到最优列对应的label含义
bestFeat = chooseBestFeatureToSplit(dataSet)
# 获取label的名称
bestFeatLabel = labels[bestFeat]
# 初始化myTree
myTree = {bestFeatLabel: {}}
# 注: labels列表是可变对象,在PYTHON函数中作为参数时传址引用,能够被全局修改
# 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list
del (labels[bestFeat])
# 取出最优列,然后它的branch做分类
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
# 求出剩余的标签label
subLabels = labels[:]
# 遍历当前选择特征包含的所有属性值,在每个数据集划分上递归调用函数createTree()
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
# print 'myTree', value, myTree
return myTree
def classify(inputTree, featLabels, testVec):
"""classify(给输入的节点,进行分类)
Args:
inputTree 决策树模型
featLabels Feature标签对应的名称
testVec 测试输入的数据
Returns:
classLabel 分类的结果值,需要映射label才能知道名称
"""
# 获取tree的根节点对于的key值
firstStr = inputTree.keys()[0]
# 通过key得到根节点对应的value
secondDict = inputTree[firstStr]
# 判断根节点名称获取根节点在label中的先后顺序,这样就知道输入的testVec怎么开始对照树来做分类
featIndex = featLabels.index(firstStr)
# 测试数据,找到根节点对应的label位置,也就知道从输入的数据的第几位来开始分类
key = testVec[featIndex]
valueOfFeat = secondDict[key]
print('+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat)
# 判断分枝是否结束: 判断valueOfFeat是否是dict类型
if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec)
else:
classLabel = valueOfFeat
return classLabel
def storeTree(inputTree, filename):
import pickle
# -------------- 第一种方法 start --------------
fw = open(filename, 'wb')
pickle.dump(inputTree, fw)
fw.close()
# -------------- 第一种方法 end --------------
# -------------- 第二种方法 start --------------
with open(filename, 'wb') as fw:
pickle.dump(inputTree, fw)
# -------------- 第二种方法 start --------------
def grabTree(filename):
import pickle
fr = open(filename, 'rb')
return pickle.load(fr)
def fishTest():
# 1.创建数据和结果标签
myDat, labels = createDataSet()
# print myDat, labels
# 计算label分类标签的香农熵
# calcShannonEnt(myDat)
# # 求第0列 为 1/0的列的数据集【排除第0列】
# print '1---', splitDataSet(myDat, 0, 1)
# print '0---', splitDataSet(myDat, 0, 0)
# # 计算最好的信息增益的列
# print chooseBestFeatureToSplit(myDat)
import copy
myTree = createTree(myDat, copy.deepcopy(labels))
print(myTree)
# [1, 1]表示要取的分支上的节点位置,对应的结果值
print(classify(myTree, labels, [1, 1]))
# 获得树的高度
print(get_tree_height(myTree))
# 画图可视化展现
dtPlot.createPlot(myTree)
def get_tree_height(tree):
"""
Desc:
递归获得决策树的高度
Args:
tree
Returns:
树高
"""
if not isinstance(tree, dict):
return 1
child_trees = tree.values()[0].values()
# 遍历子树, 获得子树的最大高度
max_height = 0
for child_tree in child_trees:
child_tree_height = get_tree_height(child_tree)
if child_tree_height > max_height:
max_height = child_tree_height
return max_height + 1
if __name__ == "__main__":
fishTest()
# ContactLensesTest()
总结
建树的过程就是先选择最优的特征(即信息增益最大的),然后递归下去
我的Tree长这样的,{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
即我首先看no surfacing
,如果为0的话就是no
,如果是1的话再去看flippers
,可以认为是 if-then 规则的集合
项目概述
隐形眼镜类型包括硬材质、软材质以及不适合佩戴隐形眼镜。我们需要使用决策树预测患者需要佩戴的隐形眼镜类型。
def ContactLensesTest():
"""
Desc:
预测隐形眼镜的测试代码
Args:
none
Returns:
none
"""
# 加载隐形眼镜相关的 文本文件 数据
fr = open('data/3.DecisionTree/lenses.txt')
# 解析数据,获得 features 数据
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
# 得到数据的对应的 Labels
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
# 使用上面的创建决策树的代码,构造预测隐形眼镜的决策树
lensesTree = createTree(lenses, lensesLabels)
print(lensesTree)
# 画图可视化展现
dtPlot.createPlot(lensesTree)
参考资料:https://github.com/apachecn/ailearning/blob/master/docs/ml/3.md