- 计算机视觉入门
109702008
人工智能#深度学习计算机视觉人工智能
计算机视觉(ComputerVision)是一门涉及使机器能够从图像或者多维数据中提取信息,解释、理解并对物体或场景进行处理的学科。以下是一个基本的计算机视觉入门学习路线,旨在为刚刚接触这一领域的学习者提供指导。1.基础知识储备数学基础:线性代数、概率论和数理统计、微积分、优化理论。编程语言:掌握至少一门编程语言,Python是目前在计算机视觉领域最流行的语言,其次是C++。2.计算机视觉基础数字
- 伍德里奇计量经济学第四章计算机答案,计量经济学中文答案 伍德里奇
weixin_39950470
第1章计置经济学的性质与经济数据1.1复习笔记一、计量经济学由于计量经济学主要考虑在搜集和分析非实验经济数据时的固有问题,计量经济学己从数理统计分离出来并演化成一门独立学科。1.非实验数据是指并非从对个人、企业或经济系统中的某些部分的控制实验而得来的数据。非实验数据有时被称为观测数据或回顾数据,以强调研宄者只是被动的数据搜集者这一事实。2.实验数据通常是在实验环境中获得的,但在社会科学中要得到这些
- 概率论与数理统计
ZhuBin365
人工智能概率论自动化人工智能机器学习深度学习
概率论部分1.随机事件与概率样本空间与随机事件:样本空间是随机试验所有可能结果的集合,通常用Ω表示。随机事件是样本空间的子集,表示随机试验的某些可能结果的集合。概率的公理化定义:概率是定义在事件集合上的函数P,满足三条公理:①非负性:P(A)≥0;②规范性:P(Ω)=1;③可列可加性:若事件A₁,A₂,...互不相容,则P(A₁∪A₂∪...)=P(A₁)+P(A₂)+...条件概率与全概率公式:
- 一文读懂!深度学习 + PyTorch 的超实用学习路线
a小胡哦
深度学习pythonpytorch
深度学习作为人工智能领域的核心技术,正深刻改变着诸多行业。PyTorch则是深度学习实践中备受青睐的框架,它简单易用且功能强大。下面就为大家详细规划深度学习结合PyTorch的学习路线。一、基础知识储备数学基础数学是很重要的!!!线性代数、概率论与数理统计、微积分是深度学习的数学基石。熟悉矩阵运算、概率分布、梯度计算等概念,能帮助理解深度学习模型的原理。例如,在神经网络中,矩阵乘法用于神经元之间的
- statistics --- 数学统计函数
知识的宝藏
python
3.4新版功能.源代码:Lib/statistics.py该模块提供了用于计算数字(Real-valued)数据的数理统计量的函数。此模块并不是诸如NumPy,SciPy等第三方库或者诸如Minitab,SAS和Matlab等针对专业统计学家的专有全功能统计软件包的竞品。此模块针对图形和科学计算器的水平。除非明确注释,这些函数支持int,float,Decimal和Fraction。当前不支持同其
- 自动驾驶领域成长方案
树上求索
自动驾驶人工智能机器学习
一、学习目标成为自动驾驶领域专家,全面掌握自动驾驶技术体系,能独立进行自动驾驶系统设计、开发与优化,解决实际工程问题。二、成长阶段(一)基础理论奠基期(1-2年)专业知识学习:学习数学(高等数学、线性代数、概率论与数理统计、数值分析等),为理解算法和模型提供数学基础;深入研究自动驾驶涉及的专业课程,如控制理论、传感器原理(激光雷达、摄像头、毫米波雷达等)、机器学习(监督学习、无监督学习、深度学习)
- 2025年最新最全的大模型学习路线规划,对于零基础入门到精通的学习者来说,可以遵循以下阶段进行
程序员辣条
学习大模型学习AI产品经理人工智能LLama大模型大模型教程
2025年最新最全的大模型学习路线规划,对于零基础入门到精通的学习者来说,可以遵循以下阶段进行:一、基础准备阶段数学基础:学习线性代数、微积分、概率论与数理统计等基础知识。这些数学基础对于理解大模型的原理和算法至关重要。编程语言:熟练掌握Python编程,这是大模型开发的首选语言。同时,了解常用的深度学习框架,如TensorFlow和PyTorch。深度学习基础:学习深度学习的基本原理和常用算法,
- 二项分布:成功与失败概率的交织呈现
进一步有进一步的欢喜
二项分布几何分布伯努利分布概率论深度学习
引言在概率论与数理统计的庞大体系中,二项分布占据着举足轻重的地位。它作为一种离散型概率分布,广泛应用于众多领域,从自然科学到社会科学,从工业生产到日常生活,都能看到它的身影。深入探究二项分布,不仅有助于我们理解随机现象背后的数学原理,还能为解决实际问题提供强大的工具。而回顾其发展历程,能让我们更全面地把握这一概念的来龙去脉。同时,了解二项分布与其他相关概念,如几何分布、二项式定理的联系,将进一步加
- 【AI中数学-数理统计-综合实例-包括python实现】 揭开数据的面纱:真实样本数据的探索与可视化
云博士的AI课堂
AI中的数学人工智能python数理统计数据预处理数据探索数据可视化机器学习
第五章:数理统计-综合实例1.揭开数据的面纱:真实样本数据的探索与可视化在人工智能(AI)应用中,数据是构建算法和模型的基石,而数理统计则为我们提供了理解和处理这些数据的工具。数据探索和可视化是数理统计中至关重要的步骤,它们不仅能帮助我们理解数据的分布、关系和趋势,还能够为后续的建模工作提供依据。本节将通过五个实际案例,展示如何使用数理统计和可视化技术对真实样本数据进行探索。每个案例都包括具体的描
- 统计学中的样本&概率论中的样本
phoenix@Capricornus
模式识别中的数学问题概率论
不知道当初谁想的把概率论和数理统计合并,作为一门课。这本身是可以合并,完整的一条线,看这里。但是,作为任课老师应该从整体上交代清楚,毕竟是两个学科,不同的学科合并必然会有各种不协调的问题。举个最基本的名词冲突的例子。统计学中的样本在统计学中,样本是从总体(Population)中选取的一部分个体或观测值。它用来代表整个总体,并用于估计总体的特征或参数。例如,如果我们想了解一个城市居民的平均收入,我
- 【概率论与数理统计】第三章 多维随机变量及其分布(3)
Arthur古德曼
概率论与数理统计概率论多维随机变量二维随机变量独立性概率分布夏明亮
2随机变量的独立性2.1两个随机变量的独立性在多维随机变量中各分量的取值有时会互相影响,但有时也会毫无影响。例如,一个人的身高XXX和体重YYY之间就会互相影响,但与收入ZZZ一般就没什么影响。这里,我们根据两个事件的独立性引出两个随机变量的独立性:之前我们这样描述:事件{X≤x}\{X\lex\}{X≤x}与事件{Y≤y}\{Y\ley\}{Y≤y}的积事件{X≤x,Y≤y}\{X\lex,\Y
- AI大模型副业变现之路,有技术就有收入!
AI大模型-王哥
人工智能AI大模型大模型大模型学习大模型教程大模型入门
在当今时代,AI大模型的应用越来越广泛,利用这些技术开展副业赚钱已成为可能。以下是一份详细的指南,帮助你了解需要学习的内容以及如何操作。一、需要学习的内容基础知识储备(1)数学知识:线性代数、概率论与数理统计、微积分等,这些是理解AI算法的基础。(2)编程技能:掌握Python编程语言,因为Python在AI领域有丰富的库和框架支持。(3)机器学习原理:了解常见的机器学习算法,如线性回归、决策树、
- 数据分析方法概括
wujingwin
数据分析大致可以分为描述性分析、诊断性分析、预测性分析,同样的数据分析的方法论也大致分为:描述性数据分析、数理统计分析、数据挖掘分析。本篇文章将就此展开谈谈这三种数据分析方法论(方法论没有好坏高低之分,只有合适的。根据业务场景来选择合适的分析方法。一定要以目标为导向,并不是手法越高级就越好。能用简单分析的就不需要使用大数据挖掘。)一、描述性数据分析方法描述性数据分析可以用一言蔽之”一句话描述数据“
- 2019-03-20记录及学习计划更正
逆风飞翔的鸟
今天早晨早早的就坐上了返回学校的高铁,自己复习的进度稍慢了一些,不过没关系,这几天再追回来,最近发现虽然自己数学的做题能力有所提升,但是熟练程度还差很多,所以接下来高等数学要多做题,线性代数基础已经复习完毕,不能丢下,每天要做一定量的练习来保持住自己的水平。概率论与数理统计自己感觉有些困难,需要从课本开始认真的复习。关于英语我已经用百词斩背了有400左右的单词了,但是不是很扎实,所以自己要提升自己
- 【个人学习笔记】概率论与数理统计知识梳理【五】
已经是全速前进了
概率论
文章目录第五章、大数定律及中心极限定理一、大数定律1.1基本概念1.2弱大数定理二、中心极限定理独立同分布的中心极限定理定理总结第五章、大数定律及中心极限定理写博客比想象中费劲得多,公式得敲好久,所以只得随缘更更了,想写一些机器学习相关的东西,但是强迫症又不允许我把这个扔掉不管,我太难了Orz这一节的内容比较深,即使我是一个喜欢数学的工科生,也没有精力再去深究了,各式各样的大数定律及中心极限定理我
- 岭回归算法
码银
回归数据挖掘人工智能
回归分析方法是利用数理统计方法分析数据,建立自变量和因变量间的回归模型,用于预测因变量变化的分析方法。其中比较经典的是HoerI和Kennard提出的岭回归算法。岭回归算法是在最小二乘法的基础上引|入正则项,使回归模型具有较好泛化能力和稳定性,但岭回归算法并不能处理自变量间非线性相关的情况。岭回归,又称脊回归,是对不适定问题进行回归分析时经常使用的一种正则化方法,是对最小二乘回归的一种补充,岭回归
- 面向面试的机器学习知识点(2)——数理统计
小井正在努力中
机器学习人工智能
本期省流版:成为数据分析师,这些数理统计知识必不可少!大样本,小样本的概念协方差、相关系数、独立性之间的区别与联系显著性水平/置信度/置信区间假设检验三种经典分布,和对应的三种检验方式方差分析中心极限定理,大数定理内容很多,创作不易,请多多支持~大样本/小样本大样本:样本量趋于无穷小样本:样本量有限协方差/相关系数/独立性协方差定义:两个变量总体的误差,反映两个变量之间的变化趋势(eg.一个上升,
- 33个热门数据分析软件,你都用过哪些?
俊红的数据分析之路
数据库可视化编程语言大数据hadoop
最近有一位小伙伴问我,做数据岗该学习哪些软件,我想了想扔给他33个软件数据分析工具类软件,大体可以分为以下5类:Excel生态工具、数理统计工具、BI工具、数据库工具、编程工具(Excel单独分成一类,主要是因为它应用场景广泛,且用户基数过于庞大,甚至超过其他所有工具用户之和)每个类别的代表工具分别有:「Excel生态」:Excel、VBA、PowerQuery、PowerPivot、PowerV
- 九月二十六日总结
疯狂太阳花
英语:2013年第三篇,我们的未来一片光明,第四篇,州政府的权利,联邦政府的权利,最高法院,三权分立,checkandbalance每日一句,信任的重要性时文精析数学:数理统计的初步,参数估计样本均值,样本方差,k阶原点矩,三个分布,卡方分布,t分布,F分布,正态总体点估计,矩估计法,最大似然估计结构力学:静定拱,三绞拱,拱轴线,拱趾,拱顶,跨度,拱高内力计算,合理拱轴线
- 概率论与数理统计实验 附源码及实验报告 可打包为exe
货又星
概率论经验分享笔记python开源
Hi,I’m@货又星I’minterestedin…I’mcurrentlylearning…I’mlookingtocollaborateon…Howtoreachme…README目录(持续更新中)各种错误处理、爬虫实战及模板、百度智能云人脸识别、计算机视觉深度学习CNN图像识别与分类、PaddlePaddle自然语言处理知识图谱、GitHub、运维…WeChat:1297767084GitH
- 线性回归算法原理及python实现
德乌大青蛙
机器学习算法python数据挖掘
文章目录引言回归与分类的区别线性回归简单线性回归原理及推导python实现算法多元线性回归原理及推导python实现算法手工实现多元线性回归算法sklearn实现多元线性回归算法引言回归与分类的区别区分回归与分类其实很简单,举个例子,预测病人患病概率,结果只有患病和不患病2种,这就是分类;预测房价,结果可能是在一段区间内,这个就是回归。线性回归线性回归是利用数理统计中回归分析方法,其本质是寻找出一
- 概率统计学习打卡——数理统计与描述性分析
xtsqmx
1.数理统计的基本概念总体:研究对象的全体(X)个体:组成总体的每个基本单元样本:从总体中抽取的一部分个体()简单随机样本:具有随机性和独立性的样本,即样本相互独立具有同一分布样本的两重性:抽样前是随机变量,抽样后是具体的数统计量:样本的函数,不含有任何未知参数抽样分布:统计量的分布2.常用的统计量样本均值:用来估计总体均值和对对有关总体均值的假设做检验样本方差:用来估计总体方差和对有关总体方差的
- 概率论与数理统计——二、随机变量及其分布
米妮爱分享
1随机变量随机变量是把样本S映射到R(实值单值)函数随机变量的引入可以来描述各种随机现象,并能利用数学分析的方法对随机实验的结果进行深入广泛的研究和讨论。2离散随机变量及其分布律(一)(0-1)分布(二)伯努力试验、二项分布(三)泊松分布3随机变量的分布函数计算分布函数时,根据其分布律,计算某一范围的概率时,左边x是小于不等于x的,当等于时,拆开的等式在3.1中还需要加上等于此值的概率,见例子。4
- 如何快速入门深度学习
人生万事须自为,跬步江山即寥廓。
机器学习人工智能chatgpt
深度学习是人工智能领域的一个重要分支,它模拟人脑的神经网络结构,通过大量的数据训练模型,使计算机能够自动学习和理解数据。深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。如果你想快速入门深度学习,可以按照以下步骤进行:1.学习基础知识在学习深度学习之前,你需要具备一定的数学基础,包括线性代数、概率论与数理统计、微积分等。此外,你还需要掌握一门编程语言,如Python,因为大多数深度
- 概率论与数理统计 第八章 假设检验
Jarkata
课前导读统计推断的另一类重要问题是假设检验问题。参数估计的主要任务是找参数值等于多少,或在哪个范围内取值。而假设检验则主要是看参数的值是否等于某个特定的值。通常进行假设检验即选定一个假设,确定用以决策的拒绝域的形式,构造一个检验统计量,求出拒绝域或检验统计量的p值,查看结果是否落在拒绝域内或p值是否小于显著性水平,做出决策的一个过程。第一节检验的基本原理举个例子,体现假设检验的思想:假设检验的统计
- 【EI会议征稿通知】第三届数理统计与经济分析国际学术会议(MSEA 2024)
搞科研的小刘选手
学术会议人工智能图像处理web安全大数据数据库
第三届数理统计与经济分析国际学术会议(MSEA2024)20243rdInternationalConferenceonMathematicalStatisticsandEconomicAnalysis第三届数理统计与经济分析国际学术会议(MSEA2024)定于2024年5月24-26日在中国济南举行。会议旨在为从事“数理统计”与“经济分析”研究的专家学者、工程技术人员、技术研发人员提供一个共享科
- 泛谈一下数字化技能的学习,SPSS、Stata还是Python?技术、业务+表达、展现!
数据科学作家
pythonSPSSStataSPSS学习数据分析统计分析机器学习
1.本科、专科上学时对于这些偏数学类的课程还是要好好学习应知乎、小红书、CSDN很多年轻朋友、同学们的邀请,今天我泛谈一下数字化技能的学习。很多学生在本科或专科上学时代学过统计学、计量经济学、机器学习、数据分析、统计分析、数据挖掘、量化建模等一门或多门课程,至少也学过概率论、数理统计、线性代数、微积分等课程,其实就已经具备了相对较好的数据分析基础。等到本科或专科毕业后,有的同学致力于读研、读博,也
- 数学建模学习笔记||灰色关联分析
展信佳 :)
数学建模学习笔记
灰色系统信息绝对透明的是白色系统,信息绝对秘密的是黑色系统,灰色系统介于两者之间关联分析即系统的分析因素包含多种因素的系统中,哪些因素是主要的,哪些因素是次要的,哪些因素影响大,哪些因素影响小,哪些需要发展,哪些需要抑制……现有因素分析的量化方法,大都是数理统计法,如回归分析,方差分析,主要成分分析等,但都有一下弱点:要求大量数据,数据量少难以找到统计规律要求分布是典型的(线性的,指数的或对数的)
- 考研计划 东南大学
风与易水
考研学习
考研计划2021考研自用,目前已经上岸东南大学,祝各位顺利!数一:高数、线代、概率论与数理统计使用参考资料:1.《同济高数、浙大概率论与数理统计》2.《李永乐基础强化系列材料》3.武忠祥教学视频4.李林8805.武老师的高数辅导讲义+李永乐线代讲义5.李林的1086.《李林冲刺6套卷,李林预测4套卷》复习策略:1.2月初~6月底第一轮打基础,以武忠祥2020视频【教材(查阅相关知识点)】为主,深刻
- 武忠祥2025高等数学,基础阶段的百度网盘+视频及PDF
m0_54050778
pdf概率论
考研数学武忠祥基础主要学习以下几个方面的内容:1.微积分:主要包括极限、连续、导数、积分等概念,以及它们的基本性质和运算方法。2.线性代数:主要包括向量、向量空间、线性方程组、矩阵、行列式、特征值和特征向量等概念,以及它们的基本性质和运算方法。3概率论与数理统计:主要包括随机事件和概率、条件概率、独立性、随机变量及其分布、数学期望方差和协方差、大数定律和中心极限定理等概念以及它们的基本性质和运算方
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&