R语言作加权最小二乘_自然语言处理算法工程师历史最全资料汇总-基础知识点、面试经验...

R语言作加权最小二乘_自然语言处理算法工程师历史最全资料汇总-基础知识点、面试经验..._第1张图片

2019年秋招已过,零星的招聘任然在继续。本资源适用于NLP算法工程师面试,也适用于算法相关的其他岗位。整理了算法面试需要数学基础知识、编程语言、深度学习、机器学习、计算机理论、统计学习、自然语言处理相关基础知识点;以及一些大长的实战面试经验,非常具有参考、学习价值,分享给大家。

本资源整理自网络,源地址:https://github.com/songyingxin/NLPer-Interview

资料具体下载地址:

链接: https://pan.baidu.com/s/1PweOUwqlCvA6uiGW4jcXkg

提取码: 54vt

内容

1. 编程语言基础

该文件夹下主要记录 python 和 c++ 的一些语言细节, 毕竟这两大语言是主流,基本是都要会的,目前还在查缺补漏中。

•C++面试题

•Python 面试题

R语言作加权最小二乘_自然语言处理算法工程师历史最全资料汇总-基础知识点、面试经验..._第2张图片

2. 数学基础

该文件夹下主要记录一些数学相关的知识,包括高数,线性代数,概率论与信息论, 老宋亲身经历,会问到, 目前尚在查缺补漏中。

•概率论

•高等数学

•线性代数

•信息论

R语言作加权最小二乘_自然语言处理算法工程师历史最全资料汇总-基础知识点、面试经验..._第3张图片

3. 计算机基础理论知识

这部分内容一般不怎么考,因此,没有把重心放在上面,至少现在几乎没有遇到问这方面的, 有意思的是,投了阿里某部的NLP算法,居然来了个不懂NLP的来面,全程真的瞎聊,全是开发。

R语言作加权最小二乘_自然语言处理算法工程师历史最全资料汇总-基础知识点、面试经验..._第4张图片

4. 机器学习基础

这部分已经开始进入正题了,事实证明,部分大厂会提及一些基础的机器学习算法知识,因此,这部分我觉得几个核心的模型是要会的。

•机器学习项目流程

•判别模型 vs 生成模型

•频率派 vs 贝叶斯派

•数据预处理

•特征工程

•特征工程-关联规

•模型 - SVM

•模型 - 聚类算法

•模型 - 决策树

•模型 - 逻辑回归

•模型 - 朴素贝叶斯

•模型 - 随机森林

•模型 - 线性回归

R语言作加权最小二乘_自然语言处理算法工程师历史最全资料汇总-基础知识点、面试经验..._第5张图片

5. 深度学习基础

这部分主要讲述深度学习方面的基础知识,是核心点,但很多情况下,很多面试官的题基本差不多,不过我个人觉得,有这种全局的,全面的知识框架是有益的。

•深度学习项目流程

5.1 基础理论部分

•基础理论 - 多任务学习

•基础理论 - 集成学习

•基础理论 - 分类问题评估指标

•基础理论 - 距离度量方法

•基础理论 - 目标函数,损失函数,代价函数

•基础理论 - 偏差 vs 方差,欠拟合 vs 过拟合

•基础理论 - 数据角度看深度学习

•基础理论 - 梯度消失,梯度爆炸问题

•基础理论 - 维数灾难问题

•基础理论 - 指数加权平均

•基础理论- 局部最小值,鞍点

•基础理论 - 集成学习

•基础理论 - 集成学习

5.2 基本单元

•基本单元 - CNN

•基本单元 - MLP

•基本单元 - RNN

5.3 调参相关

•调参 - 超参数调优

•调参 - 激活函数

•调参 - 权重初始化方案

•调参 - 优化算法

5.4 Tricks

•Trick - Dropout

•Trick - Normalization

•Trick - 融合训练集,验证集,测试集

•Trick - 提前终止

•Trick - 学习率衰减

•Trick - 正则化

R语言作加权最小二乘_自然语言处理算法工程师历史最全资料汇总-基础知识点、面试经验..._第6张图片

6. 统计自然语言处理

这部分前期的笔记做的不多,因此还没怎么开始。

R语言作加权最小二乘_自然语言处理算法工程师历史最全资料汇总-基础知识点、面试经验..._第7张图片

7. 深度学习自然语言处理

这部分算是核心的知识了,这部分还需要逐渐完善,时间有点紧啊。

•文本数据预处理

•各大任务的评价指标

•改进 NLP 模型的一些思路

R语言作加权最小二乘_自然语言处理算法工程师历史最全资料汇总-基础知识点、面试经验..._第8张图片

7.1 词向量三部曲

•词向量 - Word2Vec

•词向量 - Glove

•词向量 - FastText

7.2 预训练语言模型

•预训练语言模型 - BERT改进研究

•预训练语言模型 - 融入知识图谱

•预训练语言模型 - 自然语言生成

7.3 Attention 机制

7.4 文本分类

7.5 语义匹配

7.6 阅读理解

8. 源码阅读

这部分主要推荐一些自己阅读过的一些源码,有些源码是 NLP 相关, 有些是深度学习相关的,部分源码我个人有做注释,会相应的列出来。

9 . 老宋渣渣算法面经

这部分主要是自己面试过程中的一些感悟, 哎, 快面到自闭了。

R语言作加权最小二乘_自然语言处理算法工程师历史最全资料汇总-基础知识点、面试经验..._第9张图片

Reference

[1] DeepLearning-500-questions -- 一个很好的资源

[2] Algorithm_Interview_Notes-Chinese -- 知识比较旧了,但也很好

其他主要是自己的日常积累和看的论文。

往期精品内容推荐

通过《一天精通深度学习》培训,上手实战的你

历史最全开放语音/音频数据集整理分享

互联网技术面试最后反问面试官思路及问题整理分享

深度学习压缩感知(DCS)历史最全资源汇总分享

波士顿动力最强新秀体操型Atlas机器人

文本生成公开数据集/开源工具/经典论文详细列表分享

2019年新书-Marc Peter Deisenroth《机器学习基础》-免费分享

自动化机器学习(AutoML)文献/工具/项目资源大列表分享

历史最全-130本科技互联网类免费书籍整理-汇总分享

深度学习注意力(ICML 2019) - Alex Smola

元学习-从小样本学习到快速强化学习-ICML2019

2019年暑期实习、秋招深度学习算法岗面试要点及答案分享

深度神经网络压缩和加速相关最全资源分享

你可能感兴趣的:(R语言作加权最小二乘)