一个典型的CPU由运算器、控制器、寄存器等器件构成,这些器件靠内部总线相连。内部总线实现CPU内部各个器件之间的联系,外部总线实现CPU和主板上其他器件的联系。简单地说,在CPU中:
对于汇编程序员来说,CPU的主要部件是寄存器。寄存器是CPU中程序员可以用指令读写的部件。程序员通过改变各种寄存器中的内容来实现对CPU的控制。
8086CPU的所有寄存器都是16位的,可以存放两个字节。AX、BX、CX、DX这4个寄存器通常用来存放一般性的数据,被称为通用寄存器。
以AX为例,寄存器的逻辑结构如图2.1所示
一个16位寄存器可以存储一个16位的数据,数据在寄存器中的存放情况如图2.2所示。
8086CPU的上一代CPU中的寄存器都是8位的,为了保证兼容,使原来基于上代CPU编写的程序稍加修改就可以运行在8086之上,8086CPU的AX、BX、CX、DX这4个寄存器都可分为两个可独立使用的8位寄存器来用:
以AX为例,8086CPU的16位寄存器分为两个8位寄存器的情况如图2.3所示:
AX的低8位(0~7)构成了AL寄存器,高8位(8~15)构成了AH寄存器。AH和AL寄存器是可以独立使用的8位寄存器。下图展示了16位寄存器及它所分成的两个8位寄存器的数据存储的情况
8086CPU可以一次性处理以下两种尺寸的数据:
一个字可以存在一个16位寄存器中,这个字的高位字节和低位字节自然就存在这个寄存器的高8位寄存器和低8位寄存器中。如图2.4所示,一个字型数据20000,存在AX寄存器中,在AH中存储了它的高8位,在AL中存储了它的低8位。AH和AL中的数据,既可以看成是一个字型数据的高8位和低8位,这个字型数据的大小是20000;又可以看成是两个独立的字节型数据,它们的大小分别是78和32.
在后面的表述中,为了区分不同的进制,在16进制的数据后面加H,在二进制表示的数据后面加B,十进制表示的数据后面什么都不加。
我们是通过汇编指令控制CPU进行操作的,首先看下表2.1中的几条指令:
在进行数据传送或运算时,要注意指令的两个操作对象的位数应当是一致的,例如:
mov ax,bx
mov bx,cx
mov ax,18H
mov al,18H
add ax,bx
add ax,20000
等都是正确的指令,而:
mov ax,bl
mov bh,ax
mov al,20000 (8位寄存器最大可存放值为255的数据)
add,al,100H (将一个高于8位的数据加到一个8位寄存器中)
等都是错误的指令,错误的原因都是指令的两个操作对象的位数不一致。
CPU访问内存单元时,要给出内存单元的地址。所有的内存单元构成的存储空间是一个一维的线性空间,每一个内存单元在这个空间中都有唯一的地址,我们将这个唯一的地址称为物理地址。
CPU通过地址总线送入寄存器的,必须是一个内存单元的物理地址。在CPU向地址总线上发出物理地址之前,必须要在内部先形成这个物理地址。不同的CPU可以由不同的形成物理地址的方式,接下来讨论8086CPU如何在内部形成内存单元的物理地址。
概括地讲,16位结构(16位机、字长为16位等常见说法,与16位结构的含义相同)描述了一个CPU具有下面几方面的结构特性:
8086CPU是16位结构的CPU,这也就是说,在8086内部,能够一次性处理、传输、暂时存储的信息的最大长度是16位的。内存单元的地址在送上地址总线之前,必须在CPU中处理、传输、暂时存放,对于16位CPU,能一次性处理、传输、暂时存储16位的地址。
8086CPU有20位地址总线,可以传送20位地址,达到1MB寻址能力。8086CPU又是16位架构,在内部一次性处理、传输、暂时存储的地址为16位。从8086CPU的内部结构来看,如果将地址从内部简单地发出,那么它只能送出16位的地址,表现出的寻址能力只有64KB。8086CPU实现20位寻址方式的方法是采用一种在内部用两个16位地址合成的方法来形成一个20位的物理地址。
8086CPU相关部件的逻辑结构如图2.6所示:
如上图所示,当8086CPU要读写内存时:
地址加法器采用物理地址=段地址 × 16 \times16 ×16+偏移地址的方法用段地址和偏移地址合成物理地址。例如,8086CPU要访问地址为123C8H的内存单元,此时,地址加法器的工作过程如图2.7所示:
要注意内存是没有被划分成一个一个的段的,段的划分来自于CPU,由于8086CPU用“基础地址(段地址*16)+偏移地址=物理地址”的方式给出内存单元的物理地址,使得我们可以用分段的方式来管理内存。如下图所示,我们可以认为:地址10000H-100FFH的内存单元组成一个段,该段的起始地址(基础地址)为10000H,段地址为1000H,大小为100H;我们也可以认为地址10000H-1007FH、10080H-100FFH的内存单元组成两个段,它们的起始地址(基础地址)为:10000H和10080H,段地址为:1000H和1008H,大小都为80H。
在编程时可以根据需要,将若干地址连续的内存单元看作一个段,用段地址 × 16 \times16 ×16定位段的起始地址(基础地址),用偏移地址定位段中的内存单元。有两点需要注意:
观察下面地址,你有什么发现?
物理地址 | 段地址 | 偏移地址 |
---|---|---|
21F60H | 2000H | 1F60H |
2100H | 0F60H | |
21F0H | 0060H | |
21F6H | 0000H | |
1F00H | 2F60H |
结论:CPU可以用不同的段地址和偏移地址形成同一个物理地址。
如果给定一个段地址,仅通过变化偏移地址来进行寻址,最多可定位多少个内存单元?
结论:偏移地址16位,变化范围为0-FFFFH,仅用偏移地址来寻址最多可寻64KB个内存单元。
比如给定段地址1000H,用偏移地址寻址,CPU的寻址范围为:10000H-1FFFFH。
8086CPU在访问内存时候要由相关部件提供内存单元的段地址和偏移地址,送入加法器合成物理地址。段地址在8086CPU的段寄存器中存放。8086CPU有4个段寄存器:CS、DS、SS、ES。当8086CPU要访问内存时由这4个段寄存器提供内存单元的段地址。接下来看下CS寄存器。
CS和IP是8086CPU中两个最关键的寄存器,它们指示了CPU当前要读取指令的地址。CS为代码段寄存器,IP为指令指针寄存器,在8086PC机中,任意时刻,设CS中的内容为M,IP中的内容为N,8086CPU将从内存M × 16 \times16 ×16+N单元开始,读取一条指令并执行。
也可以这样表述:8086机中,任意时刻,CPU将CS:IP指向的内容当作指令执行。
下图展示了8086CPU读取、执行指令的工作原理(图中只包括了和所要说明的问题密切相关的部件,图中数字都为16进制)。
下面的一组图(图2.11-图2.19),以图2.10描述的情况为初始状态,展示了8086CPU读取、执行一条指令的过程。注意每幅图中发生的变化(下面对8086CPU的描述,是在逻辑结构、宏观过程的层面上进行的,隐蔽了CPU的物理结构以及具体的工作细节)。
通过上面的过程展示,8086CPU的工作过程可以简要描述如下:
在8086CPU加电启动或复位后(即CPU刚开始工作时)CS和IP被设置为CS=FFFFH,IP=0000H,即在8086PC机刚启动时,CPU从内存FFFF0H单元中读取指令执行,FFFF0单元中的指令是8086PC机开机后执行的第一条指令。
在内存中,指令和数据没有任何区别,都是二进制信息,CPU在工作的时候把有的信息看作指令,有的信息看作数据。CPU识别指令就是根据CS和IP寄存器的值,在任何时候,CPU都使用CS和IP合成指令的物理地址,到内存中读取指令码执行。如果说,内存中的一段信息曾被CPU执行过的话,那么,它所在的内存单元必然被CS:IP指向过。
在CPU中,程序员能够用指令读写的部件只有寄存器,程序员可以通过改变寄存器中的内容实现对CPU的控制。CPU从何处执行指令是由CS、IP中的内容决定的,程序员可以通过改变CS、IP中的内容来控制CPU执行目标指令。
但是注意mov指令不能用于设置CS、IP的值,在8086CPU没有提供这样的功能。8086CPU为CS、IP提供了另外的指令来改变它们的值。能够改变CS、IP的内容的指令被统称为转移指令。接下来介绍下最简单的可以修改CS、IP的指令:jmp指令。
若想同时修改CS、IP的内容,可用形如“jmp 段地址:偏移地址”的指令完成,如:
jmp 2AE3:3,执行后:CS=2AE3H,IP=0003H,CPU将从2AE33H处读取指令。
jmp 3:0B16,执行后:CS=0003H,IP=0B16H,CPU将从00B46H处读取指令。
“jmp 段地址:偏移地址”指令的功能为:用指令中给出的段地址修改CS,偏移地址修改IP。
若想仅修改IP的内容,可用形如“jmp 某一合法寄存器”的指令完成,如:
jmp ax,指令执行前:ax=1000H,CS=2000H,IP=0003H
指令执行后:ax=1000H,CS=2000H,IP=1000H
“jmp 某一合法寄存器”指令的功能为:用寄存器中的值修改IP。
jmp ax,在含义上好似:mov IP,ax。(但是注意并不存在这样的语法)
我们可以将长度为N(N<=64KB)的一组代码,存在一组地址连续、起始地址为16的倍数的内存单元中,我们可以认为,这段内存是用来存放代码的,从而定义了一个代码段,比如,将:
mov ax,0000 (B8 00 00)
add ax,0123H (05 23 01)
mov bx,ax (8B D8)
jmp bx (FF E3)
这段长度为10个字节的指令,存放在123B0H~123B9H的一组内存单元中,我们就可以认为,123B0H~123B9H这段内存就是用来存放代码的,是一个代码段,它的段地址为123BH,长度为10个字节。
将一段内存当作代码段,仅仅是我们在编程时的一种安排,CPU并不会由于这种安排,就自动地将我们定义的代码段中的指令当作指令来执行。要让CPU执行我们放在代码段中的指令,必须要将CS:IP指向所定义的代码段中的第一条指令的首地址。对于上面的例子,我们将一段代码存放在123B0H~123B9H内存单元中,将其定义为代码段,如果要让这段代码得到执行,可设CS=123BH、IP=0000H。
下面的3条指令执行后,CPU几次修改IP?都是在什么时候?最后IP中的值是多少?
mov ax,bx
sub ax,ax
jmp ax
修改四次:
最后IP中的值为0。