import torch
from torch import nn
# 导入记好了,2维卷积,2维最大池化,展成1维,全连接层,构建网络结构辅助工具
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
# 输入, 输出, 卷积核、补几圈零
Conv2d(3, 32, (5, 5), padding=2),
# Conv2d(in_channels=3, out_channels=32, kernel_size=(5, 5), stride=1, padding=2),
# 池化核
MaxPool2d(2),
# MaxPool2d(kernel_size=2, stride=2, padding=0),
Conv2d(32, 32, (5, 5), padding=2),
MaxPool2d(2),
Conv2d(32, 64, (5, 5), padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
if __name__ == '__main__':
tudui = Tudui()
# 验证网络 须知输入图像,设定全1矩阵测试
input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape)
# 绘制网络结构图
writer = SummaryWriter("log")
# 参数:网络结构对象、输入图像矩阵
writer.add_graph(tudui, input)
writer.close()
正向计算输出图像大小:
例如:conv2d(64,64,3,1,1) 、(输入,输出,卷积核,步长,补零)、
输出:64 = (64 + 2 * 1 - 3) / 1 + 1、输出大小 =(输入大小 + 2 * 补零 - 卷积核大小)步长 + 1
反向计算补零(padding)
例如:conv2d(64,64,3,1,1) 、(输入,输出,卷积核,步长,补零)、
补零 = ((64 - 1) * 1 + 3 - 64) / 2、((输出 - 1)* 1 + 卷积核 - 输入)/ 2