Pytorch实战[使用VGG16实现图片分类]

实现Pytorch完成类别分类


Object

  • 基本掌握使用pytorch框架进行神经网络训练任务
  • 使用Pycharm,Google Colab完成代码编写
  • 本次实验只是来熟悉一下训练的流程,因此模型比较简单

1. 编写代码

数据集介绍

​ CIFAR-10数据集包含6000张大小是(32,32)的图片数据,有10个类别。训练集有5000张,测试集1000张。

Pytorch实战[使用VGG16实现图片分类]_第1张图片

数据读取以及数据加载

# 创建一个transform
transform = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()
])
# 准备数据
# 参数 train=True 表示是训练数据 ,False是测试数据
train_data = torchvision.datasets.CIFAR10("./dataset", train=True, transform=transform,
                                          download=False)

test_data = torchvision.datasets.CIFAR10("./pytorch/dataset", train=False, transform=transform,
                                         download=False)
# 加载数据
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

目录结构

Pytorch实战[使用VGG16实现图片分类]_第2张图片

  • network是写的是vgg16的网络结构

VGG16的架构如下

Pytorch实战[使用VGG16实现图片分类]_第3张图片

代码

import torch
from torch import nn

# 定义网路结构
class VGG16(nn.Module):

    def __init__(self) -> None:
        super().__init__()
        self.model = nn.Sequential(

            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, input):
        output = self.model(input)
        return output
if __name__ == '__main__':
    mymodel =VGG16()
    input = torch.ones((64,3,32,32))
    output = mymodel(input)
    print(output.shape)

plot_util.py

import matplotlib.pyplot as plt
import seaborn as sns

# 画出train图线
def plot(train_loss):
    # sns.set()
    sns.set_style("dark")
    # sns.despine()

    idx_list = [i for i in range(len(train_loss))]

    plt.figure(figsize=(10, 6))
    plt.rcParams["font.size"] = 18
    plt.grid(visible=True, which='major', linestyle='-')
    plt.grid(visible=True, which='minor', linestyle='--', alpha=0.5)
    # 显示小刻度  minorticks_off()不显示
    plt.minorticks_on()

    plt.plot(idx_list, train_loss, 'o-', color='red', marker='*', linewidth=1, fillstyle='bottom')

    plt.title("traning loss")
    plt.xlabel("train times")
    plt.ylabel("train loss")
    plt.legend(["positive", "commend"])
    plt.savefig("train_loss2.png")
    # plt.show()
    plt.close()

训练

  • 定义参数
  • 加载模型
  • 保存模型
  • 画出train_loss函数
  • 默认每次从model目录下加载出已经训练的模型.pth文件,并选择下标最大的加载
def train(model,maxepoch=20) :
    mynetwork = model
    # 定义损失函数
    loss_fn = nn.CrossEntropyLoss().to(device)
    # 定义学习率
    learning_rate = 0.01
    # 优化器
    optimizer = torch.optim.SGD(mynetwork.parameters(), learning_rate)

    # 设置训练网络的参数
    total_train_step = 0
    total_test_step = 0
    # 训练轮数
    epoch = 0
    max_epoch = maxepoch
    train_loss = []
    test_accuaacy = []
    state = {'model':mynetwork.state_dict(),
             'optimizer':optimizer.state_dict(),
             'epoch':epoch
             }
    model_save_path = './result/model/'
    model_load_path = './result/model/'
    # 从加载model的路径下获取所有文件(如果是.pth后缀的文件)
    model_files = [file for file in os.listdir(model_load_path) if file.endswith('.pth') ]
    model_files.sort(key =lambda x :int((x.split('.')[0]).split('_')[1]))
    # maxx = int ((model_files[-1].split('.')[0]).split('_')[1])
    # 如果大于0 ,就可以加载
    if len(model_files) >0 :
        path = model_load_path+model_files[-1]
        checkpoint = torch.load(path)
        mynetwork.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        epoch = int ((model_files[-1].split('.')[0]).split('_')[1])
        print('----load model -----')


    for i in range(epoch,max_epoch):
        print("[----------- {} epoch train ------------]".format(i + 1))
        mynetwork.train()
        for data in train_dataloader:
            imgs, targets = data
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = mynetwork(imgs)
            loss = loss_fn(outputs, targets)

            # 优化器
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            total_train_step += 1
            if total_train_step % 100 == 0:
                print("the {} times train and loss : {} ".format(total_train_step, loss.item()))
            train_loss.append(loss.item())

        # 保存训练模型
        current_train_model_name = "model_{}.pth".format(i+1)
        torch.save(state,model_save_path+current_train_model_name)

        # 测试
        mynetwork.eval()
        total_test_loss = 0
        total_accuracy = 0
        with torch.no_grad():
            for data in test_dataloader:
                imgs, targets = data
                imgs = imgs.to(device)
                targets = targets.to(device)
                outputs = mynetwork(imgs)

                loss = loss_fn(outputs, targets)
                total_test_loss += loss.item()
                accuracy = (outputs.argmax(1) == targets).sum()
                total_accuracy += accuracy
        print("total loss in test : {} .".format(total_test_loss))
        print("total accuracy in test : {}% ".format(total_accuracy / test_data_size * 100))

        total_test_step += 1
    plot(train_loss)
if __name__ == '__main__':
    # 搭建神经网络
    mynetwork = VGG16().to(device)

    parser = ArgumentParser()
    parser.add_argument('-e', '--maxepoch', help='train max epoch',
                        default=40, type=int)
    parser.add_argument('-b', '--batch_size', help='Training batch size',
                        default=64, type=int)
    args = parser.parse_args()
    train(mynetwork ,args.maxepoch)
    print("---over---")

测试

import os

import torch
import torchvision
from PIL import Image
from torch import nn
from network.Mynetwork import VGG16

classes = ('airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 测试图片
img_path = "../images/horse.jpg"
img = Image.open(img_path)
# 由于png格式的图片格式不是3通道的需要转换成RGB格式
if img_path.endswith(".png"):
    img = img.convert('RGB')
path = r'./result/model/'
transform =torchvision.transforms.Compose([
    torchvision.transforms.Resize((32,32)),
    torchvision.transforms.ToTensor()
])
# 将图片转化成大小是 (32,32)大小的,并转换成tensor张量格式
img = transform(img)
# 获取所有的文件
files = [ file for file in os.listdir(path) if file.endswith('.pth') ]
files.sort(key=lambda x :int((x.split('.')[0]).split('_')[1]) )

# 加载最大的
load_path = path +files[-1]
checkpoint = torch.load(path+files[-1])
# model = torch.load(checkpoint['model'])
model = VGG16()

model.load_state_dict(checkpoint['model'])
# (batch_size,channel,height,width)
img = torch.reshape(img,(1,3,32,32))
model.eval()
with torch.no_grad() :
    output = model(img)
# print(output)
print(classes[output.argmax(1)])

输出 : horse

全部代码

链接: https://pan.baidu.com/s/1cAtTvj_8kYjmU-V42cAApg 密码: 53dv

pos

  • 需要修改路径,dataset按照自己想要将CIFAR10下载地址修改
  • 代码是在ubuntu环境下跑的

部署到 goolge cloab

  • 由于要用到显卡训练,白票一下goolge的colab
  • 如果有使用的可以下一个跑一下,没有的话用上面在Pycharm上跑

链接: https://pan.baidu.com/s/1u7ZYaFD3b-4Uu4KkQ4tsDA 密码: 2eur

你可能感兴趣的:(深度学习,pytorch,深度学习,python)