一行代码生成数据分析报告—Pandas-profiling

分析一个问题,从对样本进行探索开始。Python中有很多常用的数据分析函数,可以帮助我们对样本有一个初步的认识,比如describe()函数,可以很方便地生成每个变量的最大值、最小值、分位数等。
  
今天给大家介绍一个特别牛逼的函数,一行代码就能实现原始数据集的概览分析,进而可以保存成html报告。接下来揭开这个神奇函数的面纱吧。如果想看效果,可跳过第一部分的安装库教程。
  
  

文章目录

      • 一、安装pandas_profiling库
        • 1 方法一:pip install 安装
        • 2 方法二:whl文件安装
        • 3 方法三
      • 二、使用pandas_profiling
        • 1 加载数据
        • 2 一行代码生成报告
        • 3 一行代码保存报告

  
  

一、安装pandas_profiling库

  

1 方法一:pip install 安装

  
有些小伙伴直接在cmd中运行 pip install pandas_profiling 就可以成功安装这个库。那真的该恭喜你了。我的运行会报如下错误:
  
在这里插入图片描述
  

所以我准备直接下载whl文件进行安装。
  
  

2 方法二:whl文件安装

  
首先到如下网站下载whl文件:https://pypi.org/project/pandas-profiling/#files,可能会出现没有反应的情况,多进几次就好了。进去后点击Dowload Files,下载右边红框中的whl文件到本地。
  
一行代码生成数据分析报告—Pandas-profiling_第1张图片
  
在whl文件所在文件夹打开cmd,运行pip install XXX.whl,有些小伙伴可以成功安装该库。我的一直安装不了,会报如下错误。
  
一行代码生成数据分析报告—Pandas-profiling_第2张图片

  
找了很久的资料,结合报错的提示,终于运行完如下语句后成功安装了pandas_profiling库。
  

pip install --user  pandas_profiling-2.9.0-py2.py3-none-any.whl -i https://pypi.tuna.tsinghua.edu.cn/simple some-package

  
可是在jupyter中使用Pandas_Profiling.ProfilingReport时会报如下错误:concat() got an unexpected keyword argument ‘join_axes’,经查是pandas和Pandas_Profiling版本过低导致。
  
在cmd中运行 pip install --upgrade pandas和pip install --upgrade pandas_Profiling 即可。

  

3 方法三

  
如果还有小伙伴安装不好,可以试下如下方法:
  

pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip

  
  

二、使用pandas_profiling

  

1 加载数据

  
首先加载包和数据。
  

import pandas as pd
import pandas_profiling
df = pd.read_csv('testtdmodel.csv',sep=',',encoding='gb18030')
data = df[['3个月内申请人在多个平台申请借款', '7天内借款人手机申请借款平台数', '1个月内借款人手机申请借款平台数']]
data = data.astype(float)

  

2 一行代码生成报告

  
运行如下语句可以生成数据分析基本报告。

pandas_profiling.ProfileReport(data)

  
报告包含以下几部分:
  

  1. Overview(数据基本情况):包括数据集中变量个数(3)、样本行数(7252)、缺失行数(0)、缺失率(0%)、重复行数(6674)、重复率(92%)、内存占用情况等。
    一行代码生成数据分析报告—Pandas-profiling_第3张图片
      

Overview中还包含了Warnings模块,可以点击查看数据集的重复情况和变量的0值个数。
  
2. Variables(单变量情况):包括单变量值个数(54)、均值(3.88499)、最小值(0)、最大值(82)、缺失值(0)、缺失率(0%)等。
一行代码生成数据分析报告—Pandas-profiling_第4张图片

  
点击橙色框中的Toggle details可以得到更详细的单变量分析情况。
  
包括一些统计指标、单变量直方图、次数出现top的值对应占比情况、最小的几个值和最大的几个值的频率。
  
一行代码生成数据分析报告—Pandas-profiling_第5张图片
  
3. Interactions(交互性分析):每两个变量进行图展示。
一行代码生成数据分析报告—Pandas-profiling_第6张图片  

  1. Correlations(相关性分析):展示两两变量之间的相关性,值介于-1到1之间,小框中的颜色对应右边的相关性数值。
    一行代码生成数据分析报告—Pandas-profiling_第7张图片  

  2. Missing values(缺失值情况):展示每个变量的缺失值情况,这里三个变量都是7252个,不存在缺失值。
    一行代码生成数据分析报告—Pandas-profiling_第8张图片  

  3. Sample(样本示例):展示样本的前十行(相当于head(10))和后十行。
    一行代码生成数据分析报告—Pandas-profiling_第9张图片

  

  1. Duplicate rows(重复行展示):展示重复行统计前十的行。
    一行代码生成数据分析报告—Pandas-profiling_第10张图片
      

一行代码就可以很方便地生成大部分我们需要的统计指标,是不是特别实用呀?如果我们想把这个报告保存下来,应该怎么办呢?

  
  

3 一行代码保存报告

  
运行如下语句可以保存成html报告。

data.profile_report(title='Data').to_file('Data.html')

  
可以把html版的报告下载下来,发给需要使用的人,非常方便。
  
一行代码生成数据分析报告—Pandas-profiling_第11张图片
  
至此,pandas_profiling函数介绍完了,需要使用的朋友可以早日安装应用。不过建议大家生成报告的字段名称改成英文的,避免生成的报告出现乱码。
  
你可能感兴趣:
用Python绘制皮卡丘
用Python绘制词云图
Python人脸识别—我的眼里只有你
Python画好看的星空图(唯美的背景)
用Python中的py2neo库操作neo4j,搭建关联图谱
Python浪漫表白源码合集(爱心、玫瑰花、照片墙、星空下的告白)

长按(扫一扫)识别上方二维码学习更多Python和建模知识,让你的学习和工作更出彩。

你可能感兴趣的:(学习python,数据分析,python,数据分析)