GBDT、XGBoost、LightGBM简要描述

1.GBDT

(1.)GBDT原理

GBDT的原理很简单,就是所有弱分类器的结果相加等于预测值,然后下一个弱分类器去拟合误差函数对预测值的残差(这个残差就是预测值与真实值之间的误差)。当然了,它里面的弱分类器的表现形式就是各棵树。

举一个非常简单的例子,比如我今年30岁了,但计算机或者模型GBDT并不知道我今年多少岁,那GBDT咋办呢?
它会在第一个弱分类器(或第一棵树中)随便用一个年龄比如20岁来拟合,然后发现误差有10岁;
接下来在第二棵树中,用6岁去拟合剩下的损失,发现差距还有4岁;
接着在第三棵树中用3岁拟合剩下的差距,发现差距只有1岁了;
最后在第四课树中用1岁拟合剩下的残差,完美。
最终,四棵树的结论加起来,就是真实年龄30岁(实际工程中,gbdt是计算负梯度,用负梯度近似残差)

(2.)优缺点

优:
预测阶段的计算速度快,树与树之间可并行化计算。
在分布稠密的数据集上,泛化能力和表达能力都很好,这使得GBDT在Kaggle的众多竞赛中,经常名列榜首。
采用决策树作为弱分类器使得GBDT模型具有较好的解释性和鲁棒性,能够自动发现特征间的高阶关系。

缺:
GBDT在高维稀疏的数据集上,表现不如支持向量机或者神经网络。
GBDT在处理文本分类特征问题上,相对其他模型的优势不如它在处理数值特征时明显。
训练过程需要串行训练,只能在决策树内部采用一些局部并行的手段提高训练速度。

2.XGBoost

(1.)XGBoost原理

XGBoost与GBDT比较大的不同就是目标函数的定义。XGBoost的目标函数如下图所示:GBDT、XGBoost、LightGBM简要描述_第1张图片
其中红色箭头所指向的L ,即为损失函数
红色方框所框起来的是正则项(包括L1正则、L2正则)
红色圆圈所圈起来的为常数项
对于f(x),XGBoost利用泰勒展开三项,做一个近似。f(x)表示的是其中一颗回归树。

XGBoost的核心算法思想:
1.不断地添加树,不断地进行特征分裂来生长一棵树,每次添加一个树,其实是学习一个新函数f(x),去拟合上次预测的残差。
2.当我们训练完成得到k棵树,我们要预测一个样本的分数,其实就是根据这个样本的特征,在每棵树中会落到对应的一个叶子节点,每个叶子节点就对应一个分数
3. 最后只需要将每棵树对应的分数加起来就是该样本的预测值。

(2.)XGBoost与GBDT关系

1.GBDT是机器学习算法,XGBoost是该算法的工程实现。
2.在使用CART作为基分类器时,XGBoost显式地加入了正则项来控制模 型的复杂度,有利于防止过拟合,从而提高模型的泛化能力。
3.GBDT在模型训练时只使用了代价函数的一阶导数信息,XGBoost对代 价函数进行二阶泰勒展开,可以同时使用一阶和二阶导数。
4.传统的GBDT采用CART作为基分类器,XGBoost支持多种类型的基分类 器,比如线性分类器。
5.传统的GBDT在每轮迭代时使用全部的数据,XGBoost则采用了与随机 森林相似的策略,支持对数据进行采样。
6.传统的GBDT没有设计对缺失值进行处理,XGBoost能够自动学习出缺 失值的处理策略。

3.LightGBM

(1.)优化

1.基于Histogram的决策树算法。
2.单边梯度采样 Gradient-based One-Side Sampling(GOSS):使用GOSS可以减少大量只具有小梯度的数据实例,这样在计算信息增益的时候只利用剩下的具有高梯度的数据就可以了,相比XGBoost遍历所有特征值节省了不少时间和空间上的开销。
3.互斥特征捆绑 Exclusive Feature Bundling(EFB):使用EFB可以将许多互斥的特征绑定为一个特征,这样达到了降维的目的。
4.带深度限制的Leaf-wise的叶子生长策略:大多数GBDT工具使用低效的按层生长 (level-wise) 的决策树生长策略,因为它不加区分的对待同一层的叶子,带来了很多没必要的开销。实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。LightGBM使用了带有深度限制的按叶子生长 (leaf-wise) 算法
5.直接支持类别特征(Categorical Feature)
6.支持高效并行
7.Cache命中率优化

具体原理见:https://zhuanlan.zhihu.com/p/99069186

(2.)优缺点

优点:速度更快、内存更小
缺点:
1.)可能会长出比较深的决策树,产生过拟合。因此LightGBM在Leaf-wise之上增加了一个最大深度限制,在保证高效率的同时防止过拟合;
2.)Boosting族是迭代算法,每一次迭代都根据上一次迭代的预测结果对样本进行权重调整,所以随着迭代不断进行,误差会越来越小,模型的偏差(bias)会不断降低。由于LightGBM是基于偏差的算法,所以会对噪点较为敏感;
3.)在寻找最优解时,依据的是最优切分变量,没有将最优解是全部特征的综合这一理念考虑进去;

你可能感兴趣的:(建模算法,机器学习,神经网络,深度学习)