整个车牌识别有两部分组成,一个是目标检测部分,可以用yolov4等,另一个部分就是车牌识别部分,用LPRNet。
LPRNet 的官方github是 LPRNet.py
LPRNet主要需要了解三个部分
分别是 1. STN网络部分;2.主体网络部分 3.Loss部分
主体网络backbone属于轻量级模型,其中基础模块叫small_basic_block,具体参考下面注释
import torch.nn as nn
import torch
class small_basic_block(nn.Module):
def __init__(self, ch_in, ch_out):
super(small_basic_block, self).__init__()
self.block = nn.Sequential(
nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
#1x1的average pooling,降维和减少参数
#下面经过3x1和1x3卷积的学习 [替代3x3卷积],然后再进行升维
nn.ReLU(),
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
nn.ReLU(),
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
nn.ReLU(),
nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
)
def forward(self, x):
return self.block(x)
class LPRNet(nn.Module):
def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
super(LPRNet, self).__init__()
self.phase = phase
self.lpr_max_len = lpr_max_len
self.class_num = class_num
self.backbone = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0 [bs,3,24,94] -> [bs,64,22,92]
nn.BatchNorm2d(num_features=64), # 1 -> [bs,64,22,92]
nn.ReLU(), # 2 -> [bs,64,22,92]
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)), # 3 -> [bs,64,20,90]
small_basic_block(ch_in=64, ch_out=128), # 4 -> [bs,128,20,90]
nn.BatchNorm2d(num_features=128), # 5 -> [bs,128,20,90]
nn.ReLU(), # 6 -> [bs,128,20,90]
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)), # 7 -> [bs,64,18,44]
small_basic_block(ch_in=64, ch_out=256), # 8 -> [bs,256,18,44]
nn.BatchNorm2d(num_features=256), # 9 -> [bs,256,18,44]
nn.ReLU(), # 10 -> [bs,256,18,44]
small_basic_block(ch_in=256, ch_out=256), # 11 -> [bs,256,18,44]
nn.BatchNorm2d(num_features=256), # 12 -> [bs,256,18,44]
nn.ReLU(), # 13 -> [bs,256,18,44]
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)), # 14 -> [bs,64,16,21]
nn.Dropout(dropout_rate), # 0.5 dropout rate # 15 -> [bs,64,16,21]
nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16 -> [bs,256,16,18]
nn.BatchNorm2d(num_features=256), # 17 -> [bs,256,16,18]
nn.ReLU(), # 18 -> [bs,256,16,18]
nn.Dropout(dropout_rate), # 0.5 dropout rate 19 -> [bs,256,16,18]
nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # class_num=68 20 -> [bs,68,4,18]
nn.BatchNorm2d(num_features=class_num), # 21 -> [bs,68,4,18]
nn.ReLU(), # 22 -> [bs,68,4,18]
)
self.container = nn.Sequential(
nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1, 1), stride=(1, 1)),
# nn.BatchNorm2d(num_features=self.class_num),
# nn.ReLU(),
# nn.Conv2d(in_channels=self.class_num, out_channels=self.lpr_max_len+1, kernel_size=3, stride=2),
# nn.ReLU(),
)
def forward(self, x):
keep_features = list()
for i, layer in enumerate(self.backbone.children()):
x = layer(x)
if i in [2, 6, 13, 22]: #2: [bs,64,22,92] 6:[bs,128,20,90] 13:[bs,256,18,44] 22:[bs,68,4,18]
keep_features.append(x)
global_context = list()
# keep_features: [bs,64,22,92] [bs,128,20,90] [bs,256,18,44] [bs,68,4,18]
for i, f in enumerate(keep_features):
if i in [0, 1]:
# [bs,64,22,92] -> [bs,64,4,18]
# [bs,128,20,90] -> [bs,128,4,18]
f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
if i in [2]:
# [bs,256,18,44] -> [bs,256,4,18]
f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
# 没看懂这是在干嘛?有上面的avg提取上下文信息不久可以了?
f_pow = torch.pow(f, 2) # [bs,64,4,18] 所有元素求平方
f_mean = torch.mean(f_pow) # 1 所有元素求平均
f = torch.div(f, f_mean) # [bs,64,4,18] 所有元素除以这个均值
global_context.append(f)
x = torch.cat(global_context, 1) #[bs,64,4,18]+[bs,128,4,18]+[bs,256,4,18]+[bs,68,4,18]=[bs,516,4,18]
x = self.container(x) # [bs,516,4,18] -> [bs, 68, 4, 18] head头
logits = torch.mean(x, dim=2) # -> [bs, 68, 18] # 68 字符类别数 18字符序列长度
return logits
CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
'苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
'桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',
'新',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z', 'I', 'O', '-'
]
len(CHARS) = 68
def sparse_tuple_for_ctc(T_length, lengths):
input_lengths = []
target_lengths = []
for ch in lengths:
input_lengths.append(T_length)
target_lengths.append(ch)
return tuple(input_lengths), tuple(target_lengths)
for iteration in range(start_iter, max_iter):
.........
images, labels, lengths = next(batch_iterator) #labels是[3,44,68,33,22,55,36,39]代表8个字符,length=8
input_lengths, target_lengths = sparse_tuple_for_ctc(T_length, lengths) # T_length=18, length=8
#input_lengths bsx18 target_lengths=bsx8
# forward
logits = lprnet(images) # [bs. 68. 18] 64是字符串个数,18是字符序列长度
log_probs = logits.permute(2, 0, 1) # for ctc loss: T x N x C [18,bs,68]
log_probs = log_probs.log_softmax(2).requires_grad_()
# log_probs = log_probs.detach().requires_grad_()
# print(log_probs.shape)
# backprop
optimizer.zero_grad()
loss = ctc_loss(log_probs, labels, input_lengths=input_lengths, target_lengths=target_lengths)
# 【18,bs,68】【bs,8】【bsx18】【bsx8】
注意标签可能是变长的 比如
18, 45, 33, 37, 40, 49, 63 -->> 车牌 “湘E269JY”
4, 54, 51, 34, 53, 37, 38 -->> 车牌 “冀PL3N67”
22, 56, 37, 38,33, 39, 34, 46 -->> 车牌 “川R67283F”
2, 41, 44, 37, 39, 35, 33, 40 -->> 车牌 “津AD68429”
长度分别是7 7 8 8 代表labels
.........
ctc_loss = nn.CTCLoss() #下面的N=batch size
log_probs = torch.randn(50, 16, 20).log_softmax(2).detach().requires_grad_()
#T=50 N=16 C=20 ;
targets = torch.randint(1, 20, (16, 30), dtype=torch.long) # [16,30]
input_lengths = torch.full((16,), 50, dtype=torch.long) #1x16
target_lengths = torch.randint(10,30,(16,), dtype=torch.long)#16x1
loss = ctc_loss(log_probs, targets, input_lengths, target_lengths)
loss.backward()
log_probs:shape为(T, N, C)的模型输出张量,其中,T表示CTCLoss的输入长度也即输出序列长度,N表示训练的batch size长度,C则表示包含有空白标签的所有要预测的字符集总长度,log_probs一般需要经过torch.nn.functional.log_softmax处理后再送入到CTCLoss中;
targets为shape是(N, S)的张量 ,其中第一种类型,N表示训练的batch size长度,S则为标签长度,第二种类型,则为所有标签长度之和,但是需要注意的是targets不能包含有空白标签;
input_lengths:shape为(N)的张量或元组,但每一个元素的长度必须等于T即输出序列长度,一般来说模型输出序列固定后则该张量或元组的元素值均相同;
target_lengths:shape为(N)的张量或元组,其每一个元素指示每个训练输入序列的标签长度,但标签长度是可以变化的;
https://blog.csdn.net/ckqsars/article/details/108312750?spm=1001.2101.3001.6650.10&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-10-108312750-blog-106143755.pc_relevant_aa_2&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-10-108312750-blog-106143755.pc_relevant_aa_2&utm_relevant_index=11
https://blog.csdn.net/qq_38253797/article/details/125054464
https://blog.csdn.net/weixin_39027619/article/details/106143755