- 1. 基于大模型能力,如何提炼出优质prompt(入门版)
姚瑞南
prompt系列课程人工智能AIGCchatgpt
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)本文简介:入门版:基于大模型能力,如何提炼出优质prompt提示词的重要性和价值大模型基础能力简介prompt的基本定义如何定义优质的promptprompt的万能公式与套路prom
- 从System Prompt来看GPT-3.5到GPT-4的进化
herosunly
大模型systempromptgpt-3chatgptgpt4gpt4o
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了从SystemPrompt来看GPT-3.5到GPT-4的进化之路,希
- 几个导致DeepFaceLab训练速度较慢的原因
AlphaFinance
多媒体AI技术人工智能python机器学习
可能有几个原因导致DeepFaceLab训练速度较慢:复杂度:DeepFaceLab的算法和模型较为复杂,需要处理大量数据和计算复杂的数学运算,这可能导致训练速度较慢。硬件配置:DeepFaceLab需要较高的计算机配置才能运行,包括较大的内存、高性能的GPU、快速的存储器等。如果你的计算机配置不够高,可能会导致训练速度较慢。数据量:DeepFaceLab需要大量的训练数据来训练模型,如果你的数据
- AI系统架构原理与代码实战案例讲解
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI系统架构原理与代码实战案例讲解1.背景介绍1.1人工智能的发展历程1.1.1人工智能的起源与早期发展人工智能的概念可以追溯到上世纪50年代,图灵测试的提出标志着人工智能作为一门学科的诞生。早期的研究主要集中在符号推理、专家系统等领域,取得了一些突破,例如机器定理证明、西洋跳棋程序等。1.1.2人工智能的黄金时期上世纪80年代,随着专家系统的兴起,人工智能进入了一个黄金时期。专家系统通过模拟人类
- Cursor 收费太贵?3分钟教你接入超低价 DeepSeek-V3,代码质量逼近 Claude 3.5
人工智能
DeepSeek-V3实在是太便宜了,就跟不要钱似的:每百万输入tokens0.1元(缓存命中)/1元(缓存未命中),每百万输出tokens2元跟其他模型相比,DeepSeek-V3的性价比非常高,只能用“真香”来形容。Sealos推出的AI聚合代理服务SealosAIProxy为用户提供了便捷的AI模型访问通道,其中就包含了DeepSeek-V3模型。而且通过SealosAIProxy使用这些模
- 【多模态 AI】从跨模态学习到生成革命:文本、图像与音频的深度交融
网罗开发
人工智能AI大模型机器学习人工智能AIGC
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 美国采取行动扩大人工智能出口限制
数据分析能量站
机器学习人工智能
大幅拓展限制:美国政府(拜登执政末期提出)出台新规,显著扩大人工智能技术出口限制,构建针对先进芯片与模型获取的国际分级体系。出口限制范围:对多数国家限制出口人工智能芯片与模型,仅少数亲密盟友除外。新规创建三级体系,对不同国家区别对待,并首次限制大型AI模型封闭权重出口。规则运作方式意见征询与生效:新规在媒体曝光后发布,设120天公众意见征询期,供新政府参考调整,预计一年后生效。国家分级及限制一级国
- 通用人工智能的多层次提示词架构
AI天才研究院
计算机软件编程原理与应用实践大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
通用人工智能的多层次提示词架构关键词通用人工智能(AGI),多层提示词架构,人工智能设计原则,算法原理,系统架构设计,应用案例摘要本文将深入探讨通用人工智能(AGI)的多层次提示词架构,阐述其背景、核心概念、设计原则和实现方法。我们将逐步分析这一架构在不同领域的应用,并展望其未来的发展方向。通过本文,读者将了解如何构建能够模拟人类智能的多层次提示词系统,并思考其在实际应用中的潜力与挑战。目录第一部
- 半导体、芯片、人工智能、智能驾驶汽车的趋势
不爱原创的Yoga
人工智能汽车
1.市场增长与需求汽车半导体市场:预计到2025年,中国汽车半导体市场仍将保持稳健增长态势,AI和能源将成为未来最重要的两大变革因素。2023年中国汽车电子芯片行业市场规模约为820.8亿元,预计2024年有望增至905.4亿元左右。随着新能源汽车和智能化的快速发展,一些新的半导体技术在中国汽车领域迅速应用,如集中式架构和高性能处理器需求正日益增加。AI芯片市场:随着AI技术的不断普及和应用场景的
- Minimax 开源的 4 百万超长上下文模型
百态老人
人工智能大数据笔记
MiniMax开源4百万超长上下文模型MiniMax开源模型概述2025年1月15日,MiniMax发布并开源了MiniMax-01全新系列模型,这一举措在人工智能领域引发了广泛关注。该系列包含基础语言大模型MiniMax-Text-01和视觉多模态大模型MiniMax-VL-01。MiniMax作为大模型六小强(或六小虎)企业之一,其推出的这一系列模型有着诸多独特之处。这一系列模型的开源是Min
- DeepSeek-V2
百态老人
学习
DeepSeek-V2是由幻方量化旗下的AI公司DeepSeek发布的第二代MoE(Mixture-of-Experts)大模型,具有显著的性能和成本优势。以下是关于DeepSeek-V2的详细分析:性能表现:DeepSeek-V2是一个参数量为2360亿的MoE模型,其性能接近GPT-4Turbo,并在多个基准测试中表现优异,如AlignBench、MT-Bench等,超越了GPT-4,与GPT
- 程序员创业公司的技术栈选择与性能优化
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大数据AI人工智能大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《程序员创业公司的技术栈选择与性能优化》概述本文旨在探讨程序员创业公司在选择技术栈和进行性能优化方面的策略与实践。随着技术的不断进步和市场的快速变化,技术栈的选择和优化成为创业公司成功的关键因素。正确的技术栈选择不仅能够提升系统的性能和可扩展性,还能降低开发成本和维护难度。关键词技术栈选择性能优化创业公司云计算数据库微服务人工智能区块链边缘计算摘要本文首先分析了技术栈选择的重要性以及创业公司在技术
- AI人工智能深度学习算法:高并发场景下深度学习代理的性能调优
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度学习代理的兴起近年来,随着人工智能技术的飞速发展,深度学习在各个领域都取得了显著的成果。特别是在自然语言处理、图像识别、语音识别等领域,深度学习模型的性能已经超越了传统方法。为了更好地将深度学习技术应用于实际场景,深度学习代理应运而生。深度学习代理是一种将深度学习模型封装起来,并提供对外接口的服务。它可以接收来自客户端的请求,将请求数据输入到深度学习模型中进行推理,并将推理结
- error: libcublasLt.so.11: cannot open shared object file: No such file or directory/缺少libcublas.so查找
鼾声鼾语
linuxubuntu服务器pythoncan通讯方法
1,问题:gstnvtracker:Loadinglow-levellibat/opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.sogstnvtracker:Failedtoopenlow-levellibat/opt/nvidia/deepstream/deepstream/lib/libnvds_nvmulti
- AI生成PPT:智能技术重塑演示文稿创作的新篇章
mhjidfoi
人工智能
在快节奏的商业与学术环境中,演示文稿(PPT)作为信息传递与观点展示的重要工具,其质量与效率直接关系到演讲者的说服力和观众的接收度。近年来,随着人工智能(AI)技术的飞速发展,AI生成PPT的应用正逐渐从科幻概念转变为现实工具,为演示文稿的创作带来了革命性的变革。本文将深入探讨AI生成PPT的工作原理、优势、挑战以及未来展望,为您揭示这一智能技术的无限潜力。一、AI生成PPT的工作原理AI生成PP
- 零门槛一键生成PPT,利用人工智能快速提高办公效率(无需第三方插件)
beautycountry88
powerpoint人工智能
人工智能技术的发展正以惊人的速度改变着我们的世界,今天给大家介绍下利用ChatGPT快速生成PPT的方法,它能够帮助你一键生成PPT内容和漂亮的PPT文档,无需繁琐的设计和排版,只需要与ChatGPT交流,你就能轻松拥有一份令人赞叹的演示文稿。什么是ChatGPT?它是基于人工智能技术的语言模型,能够理解和生成自然语言。与传统的PPT制作方式不同,ChatGPT通过与你进行对话,理解你的需求和要点
- 探索AloT(人工智能物联网):未来智能设备的核心驱动力
为也科技
人工智能物联网边缘计算目标检测iot
探索AloT(人工智能物联网):未来智能设备的核心驱动力随着物联网(IoT)技术的飞速发展,人工智能(AI)也在各行各业中找到了应用的空间。两者的结合,诞生了一个崭新的技术领域——AloT(ArtificialIntelligenceofThings,人工智能物联网)。AloT不仅仅是AI与物联网技术的简单融合,它更是推动智能设备进化和物联网产业向更高层次发展的关键力量。今天,我们就来深入探讨Al
- Python中实现多层感知机(MLP)的深度学习模型
Echo_Wish
Python笔记从零开始学Python人工智能python深度学习开发语言
深度学习已经成为机器学习领域的一个热门话题,而多层感知机(MLP)是最基础的深度学习模型之一。在这篇教程中,我将向你展示如何使用Python来实现一个简单的MLP模型。什么是多层感知机(MLP)?多层感知机(MLP)是一种前馈神经网络,它包含一个输入层、一个或多个隐藏层以及一个输出层。每个层都由一系列的神经元组成,神经元之间通过权重连接。MLP能够学习输入数据的非线性特征,因此在复杂问题的建模中非
- 深度学习-92-大语言模型LLM之基于langchain的模型IO的模型调用
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1Model的输入输出2langchain支持的模型3调用Ollama模型3.1设置环境变量3.2大语言模型LLM(OllamaLLM)3.2.1生成文本补全3.2.2流式生成文本补全3.3聊天模型(ChatOllama)3.3.1内置的消息类型3.3.2HumanMessage和SystemMessage3.3.3元组方式构成消息列表3.3.4stream流式3.4文本嵌入模型(Olla
- 深度学习基础18(多层感知机代码实现)
NDNPOMDFLR
深度学习深度学习python经验分享人工智能神经网络
多层感知机的从零开始实现现在自己实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,将继续使用Fashion-MNIST图像分类数据集importtorchfromtorchimportnnfromd2limporttorchasd2lbatch_size=256train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)
- 增强大型语言模型(LLM)可访问性:深入探究在单块AMD GPU上通过QLoRA微调Llama 2的过程
109702008
人工智能#ROCm#python语言模型llama人工智能
EnhancingLLMAccessibility:ADeepDiveintoQLoRAThroughFine-tuningLlama2onasingleAMDGPU—ROCmBlogs基于之前的博客《使用LoRA微调Llama2》的内容,我们深入研究了一种称为量化低秩调整(QLoRA)的参数高效微调(PEFT)方法。本次重点是利用QLoRA技术在单块AMDGPU上,使用ROCm微调Llama-2
- 人工智能与量子计算:未来编程的碰撞与共鸣
大梦百万秋
知识学爆量子计算
引言:编程的“摩尔定律”快到尽头了?曾几何时,摩尔定律曾预言着计算能力的飞速发展——每两年,晶体管的数量翻倍,处理器的速度也在跟着疯狂增长。这个定律引领了数十年的技术革命,推动了今天的智能手机、超级计算机和现代互联网的诞生。然而,摩尔定律的黄金时代正逐渐走向尾声。传统的硅基芯片工艺遇到了物理极限,无法再轻易实现持续的性能翻倍。此时,新的计算范式开始崭露头角——量子计算与人工智能(AI)的结合,正在
- AI Agent:深度解析与未来展望
码事漫谈
c++人工智能
一、AIAgent的前世:从概念到萌芽(一)早期探索AIAgent的概念可以追溯到20世纪50年代,早期的AI研究主要集中在简单的规则系统上,这些系统的行为是确定性的,输出由输入决定。随着时间的推移,AI逐渐能够处理不确定性,1990年代机器学习的兴起为AIAgent的发展奠定了基础,神经网络技术的突破为深度学习的发展提供了可能。(二)技术突破2017年后,大语言模型(LLM)的出现推动了AIAg
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 【人工智能】Python常用库-Keras:高阶深度学习 API
IT古董
深度学习人工智能Python人工智能python深度学习
Keras:高阶深度学习APIKeras是一个高效、用户友好的深度学习框架,作为TensorFlow的高级API,支持快速构建和训练深度学习模型。它以模块化、简单和灵活著称,适合研究和生产环境。Keras的发音为[ˈkerəs],类似于“凯拉斯”或“克拉斯”。这个名字来源于希腊语κέρας(kéras),意思是“角”或“角质物”。这个词与深度学习的灵感来源——大脑的神经网络结构有一定联系。Kera
- 深度求索DeepSeek V2.5-1210发布:AI代码生成器迎来全新升级
2401_89759264
人工智能前端
深度学习技术日新月异,而强大的AI代码生成器也随之不断进化。今天,我们将聚焦于深度求索团队发布的DeepSeekV2.5-1210版本,这款标志着DeepSeekV2系列收官之作,为我们带来了令人惊喜的Post-Training能力提升和备受期待的联网搜索功能。这篇文章将深入探讨DeepSeekV2.5-1210的各项改进,以及其开源带来的深远影响。DeepSeekV2系列的研发历程与V2.5-1
- DCGAN - 深度卷积生成对抗网络:基于卷积神经网络的GAN
池央
生成对抗网络cnn深度学习
深度卷积生成对抗网络(DCGAN,DeepConvolutionalGenerativeAdversarialNetwork)是生成对抗网络(GAN)的一种扩展,它通过使用卷积神经网络(CNN)来实现生成器和判别器的构建。与标准的GAN相比,DCGAN通过引入卷积层来改善图像生成质量,使得生成器能够生成更清晰、更高分辨率的图像。DCGAN提出了一种通过卷积结构来提高图像生成效果的策略,并在多个领域
- 南京大学苏州校区学生代表团到访合合信息,开启“沉浸式”人工智能企业行
人工智能图像识别程序员
为进一步深化校企合作,探索产业科技拔尖创新人才培养新模式,近期,南京大学苏州校区师生代表到访上海合合信息科技股份有限公司(以下简称“合合信息”,股票代码:SH688615)。此次活动设置了展厅讲解、技术交流、模拟面试等多个体验环节,旨在增强学生对人工智能及商业大数据技术在实际应用中的理解和认识,引导学生系统性开展职业规划,提升职业胜任力。图说:南京大学苏州校区学生代表团到访合合信息合影留念合合信息
- 深度学习从入门到精通:全面指南
AI天才研究院
计算大数据AI人工智能AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《深度学习从入门到精通:全面指南》文章目录《深度学习从入门到精通:全面指南》文章关键词文章摘要引言第一部分:深度学习基础入门第1章:深度学习概述1.1深度学习的基本概念1.2深度学习的发展历程1.3深度学习的基本原理神经网络前向传播反向传播第2章:深度学习框架入门2.1TensorFlow入门TensorFlow环境搭建TensorFlow基本数据结构2.2PyTorch入门PyTorch环境搭建
- 反转字符串中的单词 II:Swift 实现与详解
网罗开发
Swiftvue.js
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多