- 智慧水库信息化系统建设产品需求文档V2.0
小赖同学啊
testTechnologyPrecious物联网
智慧水库信息化系统建设产品需求文档1.引言1.1文档目的本文档旨在明确智慧水库信息化系统的建设需求,为系统设计、开发和实施提供全面依据,确保系统功能满足水库管理业务需求,提升水库管理的智能化水平和决策效率。1.2背景介绍传统水库管理面临数据采集不及时、分析手段有限、决策依赖经验等问题,难以应对复杂多变的水文情势和日益增长的管理需求。随着物联网、大数据、人工智能等技术的发展,智慧水库建设成为必然趋势
- 黄仁勋链博会演讲实录:脱掉皮衣,穿上唐装,中文开场
黄仁勋一度尝试用中文开场,他说,“我在美国长大,学到了很多汉语。”他表示,像DeepSeek、阿里巴巴、MiniMax、百度,他们开发的产品都是世界级的,推动了全球人工智能的发展。中国的开源AI是全球进步的催化剂,以至于全世界各个行业都有机会加入到AI革命当中。7月16日,黄仁勋身着唐装出席了第三届链博会,在此之前,他身着标志性皮衣出席多个场合活动。在此之前,英伟达官宣获得H20芯片对华的出口许可
- OpenCV学习(二)-二维、三维识别
香蕉可乐荷包蛋
#OpenCVopencv学习人工智能
OpenCV是一个功能强大的计算机视觉库,可以用于识别和处理二维图像和三维图像。以下是关于二维图像和三维图像识别的基础知识和示例代码。1.二维图像识别二维图像识别通常包括图像分类、对象检测、特征提取等任务。以下是一些常见的操作:1.1图像分类使用预训练模型对图像进行分类,例如使用深度学习模型(如ResNet、MobileNet等)。importcv2#加载预训练的深度学习模型net=cv2.dnn
- 【AI 赋能:Python 人工智能应用实战】5. 梯度下降家族:SGD/Adam优化器对比实验与选择策略
AI_DL_CODE
人工智能python梯度下降优化器SGDAdamPyTorch
摘要:本文系统解析梯度下降优化器的核心原理与演进脉络,构建从理论到实战的完整知识体系。理论部分梳理优化器发展里程碑,从1951年的SGD到2018年的AdamW,揭示技术迭代逻辑;通过数学公式对比SGD、Momentum、Adam等核心算法的更新机制,解析动量加速、自适应学习率的创新点。结合损失曲面分析,阐释Momentum如何逃离鞍点、Adam如何处理悬崖梯度。实战模块基于PyTorch在MNI
- 【人工智能之深度学习】6. 卷积核工作原理:从边缘检测到特征抽象的逐层演进(附可视化工具与行业实战代码)
AI_DL_CODE
人工智能深度学习卷积核特征提取卷积神经网络边缘检测特征可视化
摘要:卷积核是卷积神经网络(CNN)的核心组件,其通过局部感受野与参数共享机制实现高效特征提取。本文从数学本质出发,揭示卷积操作的空域-频域对偶性:空域卷积等价于频域乘积(F{f∗g}=F{f}⋅F{g}F\{f*g\}=F\{f\}⋅F\{g\}F{f∗g}=F{f}⋅F{g}),解释边缘检测核(Sobel、Laplacian)的频域响应特性。通过特征可视化实验表明,CNN特征呈现逐层抽象规律:
- [论文]基于强化学习的控制输入非线性水下机器人自适应神经网络控制
王莽v2
机器人神经网络神经网络算法控制器
[论文]基于强化学习的控制输入非线性水下机器人自适应神经网络控制摘要本文研究了在水平面内运动的全驱动自主水下机器人的轨迹跟踪问题。在我们的控制设计中考虑了外部干扰、控制输入非线性和模型不确定性。基于离散时间域的动力学模型,两个神经网络(包括一个临界神经网络和一个作用神经网络)被集成到我们的自适应控制设计中。引入临界神经网络来评价设计的控制器在当前时间步长内的长期性能,并利用作用神经网络来补偿未知动
- 颠覆未来:创新代码引领人工智能与量子计算深度融合
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3人工智能量子计算
摘要在信息时代飞速演进的背景下,人工智能与量子计算正以前所未有的速度互相融合,推动着科技边界的不断拓展。本文回顾了经典算法的智慧,展示了前沿深度学习模型的构建,并通过量子电路设计探讨了创新代码的可能性,为探索未来科技变革提供了全新视角。1.引言当前,科技创新正处于高速迭代的关键阶段,传统计算方法与新型技术的交汇处正成为研究热点。人工智能的发展已渗透到各行各业,而量子计算的崛起则为解决复杂计算问题提
- 【大模型】结构化提示词:让AI高效完成复杂任务的“编程语言”
JosieBook
AI/大数据/云计算人工智能
文章目录前言:提示词一、不同提示词写作方法对比进阶技巧对比表实战组合策略二、三板斧:精准撰写提示词的黄金法则角色设定:为AI精准定位任务描述:明确行动指南输出要求:规范成果呈现三、魔法棒:零基础也能用的“AI需求翻译机”四、结构化:把提示词写成“可插拔的乐高”五、分治法:把“庞然大物”拆成可并行的小任务前言:提示词在人工智能时代,提示词(Prompt)已成为连接人类意图与AI能力的核心媒介。优质的
- 使用UV管理PyTorch项目
PyTorch是深度学习研究和开发的流行选择。可以使用uv管理PyTorch项目,包括不同Python版本依赖、管理环境、甚至加速器选择等。安装Pytorch从打包角度来看,PyTorch有几个不常见的特点:许多PyTorchwheel托管在专门的索引上,而非Python包索引(PyPI)。因此,安装PyTorch通常需要配置项目使用PyTorch专属索引。PyTorch为每种加速器生成不同的构建
- 人工智能视频分析系统人员离岗报警设计方案
liuhu21
人工智能云计算运维
一、方案概述近几年安防监控技术不断的进步,特别是在人工智能推出之后。安防监控系统结合人工智能算法做到了许多以前无法做到的事情。就比如我们今天要说的离岗检测报警监控系统。以前我们只能通过人工值守监控室的方式,通过人的判断去观看现场人员在岗情况。如今有了离岗检测监控系统,系统可以自动监测现场人员是否在岗、离岗时间以及离岗人数等等。这样,大大减少了监控室值班人员的工作量,同时相较人工监管提升了工作效率。
- AI新纪元:2025年深度学习技术突破与行业应用全景
像素笔记
杂谈人工智能深度学习ai自动驾驶工业数字化转型未来趋势技术创新
2025年,人工智能技术迎来爆发式增长,大模型、生成式AI和多模态技术持续突破,人形机器人量产元年正式开启,自动驾驶商业化进程加速,工业数字化转型全面铺开。这些进展不仅重塑了技术边界,更在多个行业创造了实际价值,推动AI从实验室走向产业化。本文将深入剖析2025年深度学习与AI领域的核心技术突破、行业应用案例及未来发展趋势,为技术从业者提供全面视角。一、深度学习核心技术突破:大模型、生成式AI与多
- 模型移植实战:从PyTorch到ONNX完整指南
慕婉0307
神经网络pytorch人工智能python
一、认识ONNXONNX(OpenNeuralNetworkExchange)是一种开放的模型表示格式,由微软和Facebook(现Meta)在2017年共同推出,旨在解决深度学习模型在不同框架之间的互操作性问题。ONNX的主要优势包括:跨框架兼容性:支持主流深度学习框架间的模型转换,包括PyTorch、TensorFlow、MXNet、CNTK等例如,可以将PyTorch训练的ResNet模型导
- 三篇AAAI顶级论文带你一键搞懂多模态!
关注gongzhonghao【计算机sci论文精选】!拿捏更多顶会顶刊发文资讯随着人工智能技术的飞速发展,多模态学习逐渐成为研究热点。多模态技术能够整合文本、图像、语音等多种模态的信息,为人工智能的应用带来了更丰富的语义理解和更强大的交互能力。此外,多模态技术在视频和语言任务中的应用也取得了显著进展。这些技术不仅提升了模型的性能,还为人工智能在更多领域的应用提供了新的可能性。今天小图给大家精选3篇
- TensorFlow GPU 2.10.1 for Python 3.9快速安装指南
疑样
本文还有配套的精品资源,点击获取简介:TensorFlowGPU2.10.1是专为Windowsx64和Python3.9设计的TensorFlow版本,它集成了GPU支持以加快深度学习模型的训练。本指南提供了该版本的概述、安装步骤及注意事项,旨在帮助开发者利用其性能优势提升机器学习项目的效率。1.TensorFlowGPU介绍1.1TensorFlow的起源与功能TensorFlow是由Goog
- 进阶向:基于Python的智能客服系统设计与实现
智能客服系统开发指南系统概述智能客服系统是人工智能领域的重要应用,它通过自然语言处理(NLP)和机器学习技术自动化处理用户查询,显著提升客户服务效率和响应速度。基于Python的实现方案因其丰富的生态系统(如NLTK、spaCy、Transformers等库)、跨平台兼容性以及易于集成的特点,成为开发智能客服系统的首选。系统架构系统核心包括两个主要功能模块:1.API集成模块负责连接各类外部服务,
- 计算机视觉产品推荐,个性化推荐:人工智能中的计算机视觉、NLP自然语言处理和个性化推荐系统哪个前景更好一些?...
这个问题直接回答的话可能还是有着很强的个人观点,所以不如先向你介绍一些这几个领域目前的研究现状和应用情况(不再具体介绍其中原理)你自己可以斟酌一下哪方面更适合自己个性化推荐。一.所谓计算机视觉,是指使用计算机及相关设备对生物视觉的一种模拟个性化推荐。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样[1]。现在人工智能的计算机视觉主要研究
- 机器学习专栏(62):手把手实现工业级ResNet-34及调优全攻略
目录一、ResNet革命性突破解析1.1残差学习核心思想1.2ResNet-34结构详解二、工业级Keras实现详解2.1数据预处理流水线2.2完整模型实现三、模型训练调优策略3.1学习率动态调整3.2混合精度训练四、性能优化技巧4.1分布式训练配置4.2TensorRT推理加速五、实战应用案例5.1医疗影像分类5.2工业质检系统六、模型可视化分析6.1特征热力图6.2参数量分析七、常见问题解决方
- 《从零构建大模型》系列(21):从头实现GPT模型——构建文本生成引擎
本文将带你从零构建类GPT模型:通过实现层归一化、前馈网络和Transformer块等核心组件,打造一个完整的文本生成模型架构,为后续训练奠定基础。目录一、GPT模型架构全景图1.1模型组件分解1.2GPT-2模型规格二、层归一化实现2.1为什么需要层归一化?2.2层归一化实现代码三、前馈神经网络实现3.1GPT中的前馈结构编辑3.2GELU激活函数3.3完整前馈网络实现四、Transformer
- AI如何塑造下一代网络安全防御体系
weishi122
web安全人工智能网络人工智能网络安全威胁检测行为分析漏洞挖掘
AI如何塑造下一代网络安全防御体系随着网络威胁日益复杂化,传统安全措施已难以应对。人工智能(AI)正通过创新解决方案重塑网络安全格局。本文将探讨AI如何推动网络安全革命,并分析实施过程中的关键挑战。日益严峻的威胁形势到2025年,网络犯罪预计将造成全球10.5万亿美元损失。传统防御手段已无法应对快速演变的威胁,这正是AI发挥关键作用的领域。人工智能:新一代数字卫士AI能实时分析海量数据,在威胁发生
- 模式识别与机器学习课程笔记(1):数学基础
Ro Jace
学习笔记机器学习笔记人工智能
模式识别与机器学习课程笔记(1):数学基础特征矢量和特征空间随机矢量的描述随机矢量的分布函数随机矢量的数字特征随机变量、随机矢量间的统计关系随机矢量的变换正态分布正态分布的定义正态分布随机矢量的性质离散随机矢量及其分布信息论矩阵微分法基本知识矢量或矩阵对于数量变量的微分二、数量函数对于矢量的微分三、矢量函数对于矢量的微分特征矢量和特征空间特征量的类型:物理量、次序量、名义量物理量:直接反映特征的实
- 深度学习方法生成抓取位姿与6D姿态估计的完整实现
ZPC8210
ROS深度学习人工智能
如何将GraspNet等深度学习模型与6D姿态估计集成到ROS2和MoveIt中,实现高精度的机器人抓取系统。1.系统架构text[RGB-D传感器]→[物体检测与6D姿态估计]→[GraspNet抓取位姿生成]→[MoveIt运动规划]→[执行抓取]2.环境配置2.1安装依赖bash#安装PyTorch(根据CUDA版本选择)pip3installtorchtorchvisiontorchaud
- 基于深度学习的目标检测:从基础到实践
Blossom.118
机器学习与人工智能深度学习目标检测人工智能音视频语音识别计算机视觉机器学习
前言目标检测(ObjectDetection)是计算机视觉领域中的一个核心任务,其目标是在图像中定位和识别多个对象的类别和位置。近年来,深度学习技术,尤其是卷积神经网络(CNN),在目标检测任务中取得了显著进展。本文将详细介绍如何使用深度学习技术构建目标检测模型,从理论基础到代码实现,带你一步步掌握目标检测的完整流程。一、目标检测的基本概念(一)目标检测的定义目标检测是指在图像中识别和定位多个对象
- 6+,基于免疫原性细胞死亡的非肿瘤分型文章,投稿到接收仅一个多月,肿瘤的热点已经传导至非肿瘤生信文章中!
生信小课堂
影响因子:6.147本文从投稿到接收仅一个多月关于非肿瘤生信,我们也解读过很多,主要有以下类型1单个疾病WGCNA+PPI分析筛选hub基因。2单个疾病结合免疫浸润,热点基因集,机器学习,分子分型等。3两种相关疾病联合分析,包括非肿瘤结合非肿瘤,非肿瘤结合肿瘤或者非肿瘤结合泛癌分析目前非肿瘤生信发文的门槛较低,有需要的朋友欢迎交流!研究概述:脑卒中是世界上死亡和残疾的主要原因之一,缺血性中风占80
- 【国内超大型智能算力中心建设白皮书 2024】
AI大模型 lose and dream
人工智能开源git开源软件githubgitlab开放原子
文末有福利!智算中心建设通过领先的体系架构设计,以算力基建化为主体、以算法基建化为引领、以服务智件化为依托,以设施绿色化为支撑,从基建、硬件、软件、算法、服务等全环节开展关键技术落地与应用。一、体系架构(一)总体架构图8智算中心总体架构智能算力中心建设白皮书,重点围绕基础、支撑、功能和目标四大部分,创新性地提出了智算中心总体架构。其中,基础部分是支撑智算中心建设与应用的先进人工智能理论和计算架构;
- 高并发解决方案:SpringBoot+Redis分布式缓存实战
fanxbl957
Web缓存springbootredis
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人高并发解决方案:SpringBoot
- SpringBoot缓存技术全解析:Redis+Caffeine二级缓存架构
fanxbl957
Web缓存springbootredis
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人SpringBoot缓存技术全解析:
- 米信使股票群诈骗真相!郑洪盛国浩盟国一带一路项目就是资金盘不要被骗了!
不成功不收费
讲述:郑洪盛国浩盟国慈善投票被骗无法出金真相!套路太深教你该如何避!!骗子引诱人上当方式很简单:先给你一点甜头尝尝,一开始入金能正常提现,也能赚一点,但当投入更多钱时,你发现你的运气开始变差了。所以,荐股类骗局最大的迷惑性是:给受害人一种假象,你是投资亏损的,而不是被骗的!广大市民对此要提高警惕,如果是还没有投资,千万不要抱有侥幸心理,一定要及时远离!一定不要打草惊蛇低碳项目数字体育,人工智能ai
- 实现大语言模型与应用的无缝对接
meslog
技术分享语言模型microsoft人工智能
在当今人工智能快速发展的时代,大语言模型(LLMs)已经成为众多应用的核心驱动力。然而,如何让这些强大的模型与各种数据源和工具进行有效集成,仍然是一个挑战。ModelContextProtocol(MCP)正是为解决这一问题而设计的开放协议,它标准化了应用程序如何向大语言模型提供上下文信息。本文将介绍MCP的基本概念,并通过C#SDK展示如何实现客户端和服务器端的交互。什么是MCP?ModelCo
- VSCode使用Jupyter完整指南配置机器学习环境
z日火
校招学习日记vscodejupyter机器学习
接下来开始机器学习部分第一步配置环境:VSCode使用Jupyter完整指南1.安装必要的扩展打开VSCode,按Ctrl+Shift+X打开扩展市场,搜索并安装以下扩展:必装扩展:Python(Microsoft官方)-Python语言支持Jupyter(Microsoft官方)-Jupyternotebook支持Pylance(Microsoft官方)-Python智能提示和语法检查推荐扩展:
- 如何调整优化器的参数来优化神经网络性能?
Idividuals
深度学习神经网络机器学习pythonscikit-learn
不同优化器有不同的可调整参数,下面以常见的优化器为例,讲解如何调整其参数来优化神经网络性能:Adam优化器Adam优化器有几个关键参数:learning_rate(学习率)、beta_1、beta_2和epsilon。1.学习率(learning_rate)-作用:控制每次参数更新的步长。学习率过大,模型可能无法收敛,在最优解附近振荡甚至发散;学习率过小,训练速度会非常缓慢。-调整方法:通常初始值
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后