在网上看到的元学习 MAML 的代码大多是跟图像相关的,强化学习这边的代码比较少。
因为自己的思路跟 MAML-RL 相关,所以打算读一些源码。
MAML 的原始代码是基于 tensorflow 的,在 Github 上找到了基于 Pytorch 源码包,学习这个包。
https://github.com/dragen1860/MAML-Pytorch-RL
./maml_rl/envs/mujoco/half_cheetah.py
import
包import numpy as np
#### 这里是引用pip方式安装的gym里面的mujoco的HalfCheetahEnv()类
from gym.envs.mujoco import HalfCheetahEnv as HalfCheetahEnv_
HalfCheetahEnv()
类class HalfCheetahEnv(HalfCheetahEnv_):
#### 获得观测信息,实际就是机器人的位置、姿态、"torso"信息并做numpy整合。
def _get_obs(self):
return np.concatenate([
self.sim.data.qpos.flat[1:],
self.sim.data.qvel.flat,
self.get_body_com("torso").flat,
]).astype(np.float32).flatten()
#### 构建仿真器内部的相机。先指定camera_id,两款相机,其中一款是固定的,距离模型放置的0.35倍的距离
def viewer_setup(self):
camera_id = self.model.camera_name2id('track')
self.viewer.cam.type = 2
self.viewer.cam.fixedcamid = camera_id
self.viewer.cam.distance = self.model.stat.extent * 0.35
# Hide the overlay
self.viewer._hide_overlay = True
#### 用于渲染。如果采用的渲染模式是'rgb_array',那么从相机中渲染获得信息,设置图片大小是500x500,将图片转换成数据并返回。如果采用的渲染模式是'human',直接对仿真器渲染,不需要获得信息。
def render(self, mode='human'):
if mode == 'rgb_array':
self._get_viewer().render()
# window size used for old mujoco-py:
width, height = 500, 500
data = self._get_viewer().read_pixels(width, height, depth=False)
return data
elif mode == 'human':
self._get_viewer().render()
HalfCheetahVelEnv()
类class HalfCheetahVelEnv(HalfCheetahEnv):
#### 这个类是具有目标速度的木头人环境,继承HalfCheetahEnv()类。奖励函数由:控制消耗,当前速度和目标速度之间的惩罚项。从均匀分布[0, 2]中采样目标速度。
"""
Half-cheetah environment with target velocity, as described in [1]. The
code is adapted from
https://github.com/cbfinn/maml_rl/blob/9c8e2ebd741cb0c7b8bf2d040c4caeeb8e06cc95/rllab/envs/mujoco/half_cheetah_env_rand.py
The half-cheetah follows the dynamics from MuJoCo [2], and receives at each
time step a reward composed of a control cost and a penalty equal to the
difference between its current velocity and the target velocity. The tasks
are generated by sampling the target velocities from the uniform
distribution on [0, 2].
[1] Chelsea Finn, Pieter Abbeel, Sergey Levine, "Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks", 2017
(https://arxiv.org/abs/1703.03400)
[2] Emanuel Todorov, Tom Erez, Yuval Tassa, "MuJoCo: A physics engine for
model-based control", 2012
(https://homes.cs.washington.edu/~todorov/papers/TodorovIROS12.pdf)
"""
#### 接受任务、任务的目标速度键值对,声明对父类的继承。
def __init__(self, task={}):
self._task = task
self._goal_vel = task.get('velocity', 0.0)
super(HalfCheetahVelEnv, self).__init__()
#### 从仿真器中获取蚂蚁的采取动作前的位置(位姿)xposbefore;在仿真器中采用self.frame_skip帧率执行action动作后进行仿真;从仿真器中获取蚂蚁的采取动作后的位置(位姿)xposafter;
def step(self, action):
xposbefore = self.sim.data.qpos[0]
self.do_simulation(action, self.frame_skip)
xposafter = self.sim.data.qpos[0]
#### 前馈速度用速度公式求出来;然后获得前馈的速度有关的奖励;控制损失是各个维度的动作的平方和,也就是说,动作的幅度越大,那么控制损失就越大。
forward_vel = (xposafter - xposbefore) / self.dt
forward_reward = -1.0 * abs(forward_vel - self._goal_vel)
ctrl_cost = 0.5 * 1e-1 * np.sum(np.square(action))
#### 从上一个类中获得位姿和其他一些从参数。计算奖励。done默认设置成False,表示不完成。infos表示当前任务信息,和奖励函数的各个子变量。最后返回一个元组。
observation = self._get_obs()
reward = forward_reward - ctrl_cost
done = False
infos = dict(reward_forward=forward_reward,
reward_ctrl=-ctrl_cost, task=self._task)
return (observation, reward, done, infos)
def sample_tasks(self, num_tasks):
#### 从均匀分布[0.0,2.0]中采样num_tasks个任务,在每个任务中记录键值对'velocity'和数值。
velocities = self.np_random.uniform(0.0, 2.0, size=(num_tasks,))
tasks = [{'velocity': velocity} for velocity in velocities]
return tasks
def reset_task(self, task):
#### 重置任务。
self._task = task
self._goal_vel = task['velocity']
HalfCheetahDirEnv()
类class HalfCheetahDirEnv(HalfCheetahEnv):
#### 这个类是具有目标速度的木头人环境,继承HalfCheetahEnv()类。奖励函数由:控制消耗,当前速度和目标速度之间的惩罚项。从伯努力分布中采样方向,正负方向都是0.5概率。
"""
Half-cheetah environment with target direction, as described in [1]. The
code is adapted from
https://github.com/cbfinn/maml_rl/blob/9c8e2ebd741cb0c7b8bf2d040c4caeeb8e06cc95/rllab/envs/mujoco/half_cheetah_env_rand_direc.py
The half-cheetah follows the dynamics from MuJoCo [2], and receives at each
time step a reward composed of a control cost and a reward equal to its
velocity in the target direction. The tasks are generated by sampling the
target directions from a Bernoulli distribution on {-1, 1} with parameter
0.5 (-1: backward, +1: forward).
[1] Chelsea Finn, Pieter Abbeel, Sergey Levine, "Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks", 2017
(https://arxiv.org/abs/1703.03400)
[2] Emanuel Todorov, Tom Erez, Yuval Tassa, "MuJoCo: A physics engine for
model-based control", 2012
(https://homes.cs.washington.edu/~todorov/papers/TodorovIROS12.pdf)
"""
#### 接受任务、任务的目标方向键值对,声明对父类的继承。
def __init__(self, task={}):
self._task = task
self._goal_dir = task.get('direction', 1)
super(HalfCheetahDirEnv, self).__init__()
#### 从仿真器中获取蚂蚁的采取动作前的位置(位姿)xposbefore;在仿真器中采用self.frame_skip帧率执行action动作后进行仿真;从仿真器中获取蚂蚁的采取动作后的位置(位姿)xposafter;
def step(self, action):
xposbefore = self.sim.data.qpos[0]
self.do_simulation(action, self.frame_skip)
xposafter = self.sim.data.qpos[0]
#### 前馈速度用速度公式求出来;然后获得前馈的速度的正负数值表示方向,随后计算有关的奖励;控制损失是各个维度的动作的平方和,也就是说,动作的幅度越大,那么控制损失就越大。
forward_vel = (xposafter - xposbefore) / self.dt
forward_reward = self._goal_dir * forward_vel
ctrl_cost = 0.5 * 1e-1 * np.sum(np.square(action))
#### 从上上一个类中获得位姿和其他一些参数。计算奖励。done默认设置成False,表示不完成。infos表示当前任务信息,和奖励函数的各个子变量。最后返回一个元组。
observation = self._get_obs()
reward = forward_reward - ctrl_cost
done = False
infos = dict(reward_forward=forward_reward,
reward_ctrl=-ctrl_cost, task=self._task)
return (observation, reward, done, infos)
#### 从伯努力分布中采样num_tasks个任务,在每个任务中记录键值对'direction'和数值。
def sample_tasks(self, num_tasks):
directions = 2 * self.np_random.binomial(1, p=0.5, size=(num_tasks,)) - 1
tasks = [{'direction': direction} for direction in directions]
return tasks
#### 重置任务。
def reset_task(self, task):
self._task = task
self._goal_dir = task['direction']