- 推荐算法特征工程实战:用户与物料动态画像构建指南
Jay Kay
推荐算法推荐算法算法机器学习
在推荐系统的特征工程中,动态画像是提升推荐精准性的核心武器。通过捕捉用户行为偏好和物料热度变化,算法能实现千人千面的精准推荐。本文结合两张关键图表,深入解析动态画像的构建方法与工程实践。一、用户动态画像:六大维度精准刻画兴趣偏好用户动态画像基于六个关键维度构建(如表2-1所示),形成"6W"行为模型:用户粒度物料属性时间粒度动作类型统计对象统计方法1.核心维度解析(附典型场景)维度可选值应用场景用
- 基于AFM注意因子分解机的推荐算法
深度学习乐园
深度学习实战项目深度学习科研项目推荐算法算法机器学习
关于深度实战社区我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万+粉丝,拥有2篇国家级人工智能发明专利。社区特色:深度实战算法创新获取全部完整项目数据集、代码、视频教程,请进入官网:zzgcz.com。竞赛/论文/毕设项目辅导答疑,v:zzgcz_com1.项目简介项目A033基于A
- 【AI大模型学习路线】第二阶段之RAG基础与架构——第十一章(【项目实战】基于RAG的新闻推荐)传统推荐算法与基于LLM的推荐算法?
985小水博一枚呀
人工智能学习架构推荐算法算法
【AI大模型学习路线】第二阶段之RAG基础与架构——第十一章(【项目实战】基于RAG的新闻推荐)传统推荐算法与基于LLM的推荐算法?【AI大模型学习路线】第二阶段之RAG基础与架构——第十一章(【项目实战】基于RAG的新闻推荐)传统推荐算法与基于LLM的推荐算法?文章目录【AI大模型学习路线】第二阶段之RAG基础与架构——第十一章(【项目实战】基于RAG的新闻推荐)传统推荐算法与基于LLM的推荐算
- 【Python使用】嘿马推荐系统全知识和项目开发教程第2篇:1.4 案例--基于协同过滤的电影推荐,1.5 推荐系统评估
python后端
教程总体简介:1.1推荐系统简介学习目标1推荐系统概念及产生背景2推荐系统的工作原理及作用3推荐系统和Web项目的区别1.3推荐算法1推荐模型构建流程2最经典的推荐算法:协同过滤推荐算法(CollaborativeFiltering)3相似度计算(SimilarityCalculation)4协同过滤推荐算法代码实现:二根据用户行为数据创建ALS模型并召回商品2.0用户行为数据拆分2.1预处理be
- JAVA推荐系统-基于用户和物品协同过滤的电影推荐
泰山AI
技术交流推荐算法java算法
系统原理该系统使用java编写的基于用户的协同过滤算法(UserCF)和基于物品(此应用中指电影)的协同过滤(ItemtemCF)利用统计学的相关系数经常皮尔森(pearson)相关系数计算相关系数来实现千人千面的推荐系统。协同过滤算法协同过滤推荐算法是诞生最早,并且较为著名的推荐算法。主要的功能是预测和推荐。协同过滤(CollaborativeFiltering,简写CF)是推荐系统最重要得思想
- 以java电商平台为例,做一个基于物品的协同推荐算法
浪工程序设计合作
软件开发教学java推荐算法开发语言
博主介绍:全网个人号和企业号粉丝40W+,每年辅导几千名大学生较好的完成毕业设计,专注计算机软件领域的项目研发,不断的进行新技术的项目实战⭐️热门专栏推荐订阅⭐️订阅收藏起来,防止下次找不到有成品项目也可定制,需求的各位可以先收藏起来文章结尾有联系名片找我在电商平台中,基于物品的协同过滤(Item-basedCollaborativeFiltering)是一种常用的推荐算法。它的核心思想是:如果用
- 推荐算法介绍-基础算法
盒子6910
运维视角下的广告业务算法推荐算法机器学习c++javapython
本系列教程也可以称为【深度学习-推荐系统】的读书笔记,该书系统化讲解了现代推荐系统的演进历程和工程实现,是一本非常优秀的推荐系统入门教程一、推荐系统架构1.1推荐系统介绍概述:获得“用户信息”、“物品信息”、“场景信息”的基础上,推荐系统要处理的问题可以形式化的定义为对于用户U(user),在特定场景C(context)下,针对海量的“物品信息”,构建一个函数f(U,I,C),预测用户对特定候选物
- 基于Python的网易云音乐热歌数据爬取与可视化分析实践
基于Python的网易云音乐热歌数据爬取与可视化分析实践一、项目背景与意义在数字音乐蓬勃发展的今天,网易云音乐凭借其独特的社交属性和个性化推荐算法,成为众多音乐爱好者的首选平台。平台上的热歌榜Listitem单不仅反映了当下的音乐流行趋势,还蕴藏着用户的音乐偏好、情感共鸣等信息。利用Python强大的数据处理与分析能力,对网易云音乐热歌数据进行爬取与可视化分析,能够深入挖掘这些数据背后的价值,为音
- 题解 | #Problem A# 第一次打表 新的做题思路
愤怒的小青春
java
Java|Python|C++机试/手撕技巧淘天电话一面(透心凉)4399笔试_0814领先的国产工业软件——同元软控2024校招直播来啦!!恒生面经领先的国产工业软件——同元软控2024校招直播来啦!!秋招快手推荐算法一二三hr面还有加面面经4399笔试:还算可以快手社科广告算法面经4399笔试(JAVA)关于4399的笔经(寄)8/184399笔试工行面试汇总22届秋招总结(雄安天津之银行国企
- 【推荐算法】推荐算法演进史:从协同过滤到深度强化学习
白熊188
推荐算法推荐算法算法机器学习
推荐算法演进史:从协同过滤到深度强化学习一、传统推荐时代:协同过滤的奠基(1990s-2006)1.1算法背景:信息爆炸的挑战1.2核心算法:协同过滤1.3局限性二、深度学习黎明:神经网络初探(2010-2015)2.1算法背景:深度学习的崛起2.2奠基模型:DeepCrossing2.3NeuralCF:协同过滤的神经网络化三、特征交叉革命:结构创新浪潮(2016-2017)3.1Wide&De
- 【推荐算法】推荐系统核心算法深度解析:协同过滤 Collaborative Filtering
白熊188
推荐算法算法机器学习人工智能推荐算法推荐
推荐系统核心算法深度解析:协同过滤一、协同过滤的算法逻辑协同过滤的两种实现方式二、算法原理与数学推导1.相似度计算关键公式2.矩阵分解(MF)进阶三、模型评估1.准确性指标2.排序指标(Top-N推荐)3.多样性&新颖性四、应用案例五、面试常见问题六、详细优缺点优点缺点七、优化方向总结一、协同过滤的算法逻辑协同过滤的核心思想是利用群体智慧:假设:相似用户对物品有相似偏好,相似物品会被相似用户喜欢。
- 科研学习 论文解读——面向电商内容安全风险管控的协同过滤推荐算法研究(1)
2401_84296945
学习安全推荐算法
面向电商内容安全风险管控的协同过滤推荐算法研究-中国知网(cnki.net)")面向电商内容安全风险管控的协同过滤推荐算法研究*摘要:**[目的/意义]随着电商平台商家入驻要求降低以及商品上线审核流程简化,内容安全风险问题成为协同过滤推荐算法伦理审查的核心问题之一。[方法/过程]本文将内容安全风险问题纳入用户协同过滤推荐算法的优化过程,提出一种改进的推荐算法。首先,采用混合研究方法对内容安全风险商
- 推荐算法八股
仙尊方媛
推荐算法机器学习人工智能数据挖掘深度学习算法
跑路了,暑期0offer,华为主管面挂了,真幽默,性格测评就挂了居然给我一路放到主管面,科大迅飞太嚣张,直接跟人说后面要面华为,元戎启行,学了C++后python完全忘了怎么写,挺尴尬的,一面挂,想着做视觉后面也找不到工作,跑路,科大和元戎的面试官都挺好的,华为技术面感觉面完啥也没学到,再见,计算机视觉1.求x的平方根,梯度下降法defgradient_descent_sqrt(a,eta=0.0
- 旅游推荐数据分析可视化系统算法
万能程序员-传康Kk
旅游数据分析算法
旅游推荐数据分析可视化系统算法本文档详细介绍了旅游推荐数据分析可视化系统中使用的各种算法,包括推荐算法、数据分析算法和可视化算法。目录推荐算法基于用户的协同过滤推荐基于浏览历史的推荐主题推荐算法亲子游推荐算法文化游推荐算法自然风光推荐算法随机推荐算法数据分析与可视化算法词云生成算法地理分布可视化用户活跃度分析评分与销量分析价格分布分析推荐算法基于用户的协同过滤推荐协同过滤是一种常用的推荐算法,通过
- 基于情感 AI 的音乐推荐系统研究
ES算法工程师
人工智能推荐算法ai
摘要:本文提出并实现了一种基于情感AI的音乐推荐系统,旨在通过理解用户情感状态提供个性化音乐推荐服务。系统融合了情感分析技术与多种推荐算法,构建了从前端用户交互到后端数据处理的完整架构。经实验验证,该系统能有效提升用户音乐搜索效率与聆听体验,为情感化音乐推荐领域提供了新的研究思路与实践方法。一、引言随着数字音乐平台的普及,用户面对海量音乐资源时往往难以精准定位符合自身情感需求的作品。传统基于用户行
- 广告推荐原理分析
惜之惜之
人工智能
推荐算法的核心技术主要基于用户行为分析、数据建模和多维度特征匹配,其核心逻辑是通过对用户显性/隐性反馈数据的深度挖掘,结合机器学习模型实现精准预测。以下从推荐机制原理和语音监听争议两个维度进行解析:一、推荐算法识别用户喜好的核心技术1行为数据建模-显性反馈:通过用户主动行为(如点赞、收藏、购买)直接获取偏好数据。例如用户在短视频平台的点赞行为会被记录为正向反馈-隐性反馈:分析停留时长、重复播放、滑
- 推荐算法:生成式排序调研(一)
背景生成式排序作为生成式模型在推荐系统中的重要应用方向,旨在通过生成式模型对用户行为序列进行建模,从而实现对用户兴趣的动态捕捉和对未来行为的准确预测。与传统基于特征工程的推荐方法相比,生成式排序模型能够更自然地处理序列数据,捕捉用户行为的长期依赖关系,并且可以自适应地更新用户兴趣表示,以适应用户兴趣的变化。此外,生成式排序模型还具有更好的可扩展性,能够更容易地整合新的特征和数据源,从而不断提升模型
- 基于 HarmonyOS Next 开发一款商城APP 课程设计或毕业设计
码农乐园
harmonyos华为课程设计毕业设计
基于HarmonyOSNext开发一款商城APP,作为课程设计或毕业设计的项目,是一个涉及多方面技术的综合性项目。这不仅包括前端界面设计,还涉及数据请求接口、数据存储、调用支付系统、用户管理、推荐算法等功能。通过这个项目,可以展示你对HarmonyOS生态的理解和应用,同时提升你的工程实践能力。1.项目概述1.1项目背景随着电子商务的发展,越来越多的消费者倾向于在手机应用上进行购物。基于Harmo
- 程序员转行大模型:应对中年危机,职场发展新机遇,升职加薪不是梦!
大模型老炮
职场和发展人工智能语言模型大模型学习程序员AI大模型
最近研究了一下大模型相关的内容,决定从互联网的推荐算法转行做大模型推理工程化相关的工作。所以简单说说我在这个决定中的思考过程。前排提示,文末有大模型AGI-CSDN独家资料包哦!1.推荐算法岗的现状我本来是一个在大厂做推荐算法的工程师。收入在行业里面算是中游水平,就这么一直干着似乎也没什么问题。但是互联网行业的岗位毕竟和公务员和事业单位比,不存在一个工作干一辈子的情况。这个工作能不能继续干完全取决
- 大规模数据并行排序策略(Parallel Sample Sort)
东北豆子哥
数值计算/数值优化HPC/MPI算法
大规模数据并行排序策略对于上亿条大型记录的并行排序,基于MPI的多节点环境,可以采用以下策略来充分利用内存和网络资源:推荐算法:样本排序(SampleSort)样本排序是大规模并行排序的高效算法,特别适合MPI环境:数据划分阶段:每个节点从本地数据中抽取代表性样本收集所有样本到主节点并排序根据样本确定划分点(pivots)并广播给所有节点数据重分配阶段:每个节点根据pivots将本地数据划分到对应
- 数据挖掘助力大数据领域的精准营销
大数据洞察
ai
数据挖掘助力大数据领域的精准营销关键词:数据挖掘、精准营销、大数据分析、机器学习、用户画像、推荐系统、客户细分摘要:本文深入探讨了数据挖掘技术如何赋能大数据领域的精准营销。文章首先介绍了精准营销的背景和挑战,然后详细解析了数据挖掘的核心概念和技术原理,包括用户画像构建、推荐算法和客户细分模型。通过Python代码实现和数学公式推导,展示了如何应用这些技术解决实际问题。文章还提供了实战案例、工具资源
- 推荐算法面经之八股文
小李飞刀李寻欢
NLP与推荐算法推荐算法面试八股文
哈喽,各位大佬们好,本文提纲搜集于某招聘软件,回答是我扯淡的,下面我一一总结如下,并稍微分门别类,仅供参考,不保证正确,这些记住了用来胡诌完全可以应付一面。anyproblemcouldbesolvedinqqgroup8683731921-参数服务器上用SGD训练的时候有同步和异步两种方法,各自的优缺点是什么,异步怎么保证收敛性;2-物品冷启动、用户冷启动的业务意义和常见做法;物品冷启动,首先入
- 基于协同过滤推荐算法+数据可视化大屏+SpringBoot+Vue的半成品配菜服务平台系统设计和实现(源码+LW+部署讲解)
阿勇学长
大数据项目实战案例Java精品毕业设计实例微信小程序项目实战案例1024程序员节半成品配菜服务平台系统Java毕业设计数据可视化
博主介绍:✌全网粉丝50W+,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等
- 推荐系统算法:基于内容的推荐与协同过滤的结合
数字魔方操控师
算法推荐算法协同过滤内容的推荐
摘要:随着互联网的迅速发展,信息过载问题日益严重,推荐系统作为解决这一问题的有效手段,得到了广泛的研究和应用。本文详细介绍了基于内容的推荐算法和协同过滤算法的原理、优缺点,深入探讨了两者结合的方法及应用场景,并对未来推荐系统算法的发展趋势进行了展望。通过将两种算法相结合,可以充分发挥各自的优势,提高推荐系统的准确性和有效性,为用户提供更加个性化、精准的推荐服务。一、引言在当今数字化时代,互联网上的
- 机器学习算法实战系列:推荐系统核心技术——从协同过滤到深度学习
全息架构师
AI行业应用实战先锋机器学习算法深度学习
机器学习算法实战系列:推荐系统核心技术——从协同过滤到深度学习引言“每天影响着数十亿用户决策的推荐系统,究竟如何精准预测你的喜好?从电商平台到视频网站,从新闻推送到音乐播放列表,推荐算法正在重塑数字时代的用户体验!”推荐系统是机器学习最具商业价值的应用领域之一,优秀的推荐算法能够显著提升用户参与度和商业转化率。本文将深入解析推荐系统的核心技术,从经典的协同过滤到前沿的深度学习方法,通过电商推荐、内
- 为什么转行大模型行业?一篇文章让你搞明白,深度解析大模型行业,非常详细!
大模型入门学习
人工智能学习大模型AI产品经理程序员AI大模型
引言2023年ChatGPT的爆发式发展,标志着AI大模型技术正式进入大众视野。这一技术不仅重塑了人工智能的边界,更催生了全新的职业赛道。从传统算法工程师到互联网从业者,越来越多的人开始将目光投向大模型领域。本文将深入探讨这一现象背后的核心动因,并结合行业现状、技术趋势与职业发展路径,为从业者提供系统性分析。一、行业变革:传统岗位萎缩与大模型崛起传统技术岗位的困境以推荐算法为例,随着移动互联网流量
- 行业群新玩法:AI智能名片自动匹配资源,某大咖靠它年入百万,你却还在手动拉人?
说私域
人工智能零售小程序开源
基于开源AI智能名片链动2+1模式S2B2C商城小程序的QQ群同频化运营革新研究摘要:本研究聚焦QQ群生态中用户身份失真、需求匹配低效、社群价值流失等核心痛点,结合开源AI智能名片链动2+1模式S2B2C商城小程序的技术特性,提出"身份链验证-需求链匹配-利益链绑定"三维运营模型。通过区块链存证技术实现用户身份真实性验证,AI智能推荐算法完成需求精准触达,链动2+1模式重构利益分配机制,推动QQ群
- 重塑数字时代的核心引擎:Python如何成为跨领域技术创新的万能钥匙
派森侠
python
在智能科技狂飙突进的今天,Python早已超越传统编程语言的范畴,进化为数字时代的"技术基座"。从金融量化分析到人工智能前沿探索,从Web应用开发到物联网设备控制,Python以其简洁优雅的语法、庞大活跃的生态系统,成为全球开发者手中最得心应手的工具。在互联网领域,Python凭借Django、Flask等高效框架,支撑起从初创企业到科技巨头的核心业务系统。字节跳动的推荐算法、豆瓣的内容生态、知乎
- MovieLens 数据集介绍与下载指南
古月฿
软件安装教程数据集人工智能
目录一、数据集简介二、数据集包含的内容三、数据集的用途四、数据集安装(一)在线下载(二)借助Python库安装(三)文章置顶数据集一、数据集简介MovieLens数据集在推荐系统领域极具影响力,由明尼苏达大学GroupLens研究小组精心收集并持续维护。该数据集整合了大量电影评分、标签及相关元数据,为推荐算法的研究与优化提供了坚实的数据基础,助力学者和开发者构建更精准的用户观影偏好推荐系统。二、数
- 万变不离其宗:用统一框架理解向量化召回
文文学霸
算法大数据机器学习人工智能深度学习
前言常读我的文章的同学会注意到,我一直强调、推崇,不要孤立地学习算法,而是要梳理算法的脉络+框架,唯有如此,才能真正融会贯通,变纸面上的算法为你的算法,而不是狗熊掰棒子,被层出不穷的新文章、新算法搞得疲于奔命。之前,我在《推荐算法的"五环之歌"》梳理了主流排序算法常见套路:特征都ID化。类别特征天然是ID型,而实数特征需要经过分桶转化。每个ID特征经过Embedding变成一个向量,以扩展其内涵。
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">