pytorch中有提供nn.Sequential()、nn.ModuleList()以及nn.ModuleDict()用于集成多个Module,完成模型搭建。其异同如下:
Sequential() | ModuleList() /ModuleDict() |
---|---|
直接搭建网络,定义顺序即为模型连接顺序 | List/Dict中元素顺序并不代表其在网络中的真实位置顺序,需要forward函数指定各个层的连接顺序 |
模型中间无法加入外部输入 | 模型中间需要之前层的信息的时候,比如 ResNets 中的残差计算,比较方便 |
# 方法一:
import torch.nn as nn
net = nn.Sequential(
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 10),
)
# 方法二:
import collections
net2 = nn.Sequential(collections.OrderedDict([
('fc1', nn.Linear(784, 256)),
('relu1', nn.ReLU()),
('fc2', nn.Linear(256, 10))
]))
# List
class model(nn.Module):
def __init__(self):
super().__init__()
self.modulelist = nn.ModuleList([nn.Linear(784, 256), nn.ReLU(),nn.Linear(256, 10)])
def forward(self, x):
for layer in self.modulelist:
x = layer(x)
return x
# Dict
class model(nn.Module):
def __init__(self):
super().__init__()
self.moduledict = nn.ModuleDict({
'linear': nn.Linear(784, 256),
'act': nn.ReLU(),
'output':nn.Linear(256, 10)
})
def forward(self, x):
for layer in self.moduledict:
x = layer(x)
return x
对于大型复杂模型,可以先将模型分块,然后在进行模型搭建。以U-Net模型为例。
上图为U-Net网络结构,可以分为以下四个模块:
import torch
import torch.nn as nn
import torch.nn.functional as F
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=True):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
factor = 2 if bilinear else 1
self.down4 = Down(512, 1024 // factor)
self.up1 = Up(1024, 512 // factor, bilinear)
self.up2 = Up(512, 256 // factor, bilinear)
self.up3 = Up(256, 128 // factor, bilinear)
self.up4 = Up(128, 64, bilinear)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return logits
import torchvision.models as models
net = models.resnet50()
print(net)
# 替换其中fc层
from collections import OrderedDict
classifier = nn.Sequential(OrderedDict([('fc1', nn.Linear(2048, 128)),
('relu1', nn.ReLU()),
('dropout1',nn.Dropout(0.5)),
('fc2', nn.Linear(128, 10)),
('output', nn.Softmax(dim=1))
]))
#此句直接用定义的classifier替换原来fc层
net.fc = classifier
#定义模型修改
class Model(nn.Module):
def __init__(self, net):
super(Model, self).__init__()
# 原网络结构
self.net = net
# 先将2048维的tensor通过激活函数层
self.relu = nn.ReLU()
# dropout层
self.dropout = nn.Dropout(0.5)
# 全连接层映射到指定的输出维度10
self.fc_add = nn.Linear(1001, 10, bias=True)
self.output = nn.Softmax(dim=1)
def forward(self, x, add_variable):
x = self.net(x)
#在激活层、dropout层后与外部输入变量拼接
x = torch.cat((self.dropout(self.relu(x)), add_variable.unsqueeze(1)),1) #unsqueeze操作是为了和net输出的tensor保持维度一致,常用于add_variable是单一数值 (scalar) 的情况
x = self.fc_add(x)
x = self.output(x)
return x
#实例化
model = Model(net).cuda()
#训练
outputs = model(inputs, add_var)
class Model(nn.Module):
def __init__(self, net):
super(Model, self).__init__()
self.net = net
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.5)
self.fc1 = nn.Linear(1000, 10, bias=True)
self.output = nn.Softmax(dim=1)
def forward(self, x, add_variable):
x1000 = self.net(x)
x10 = self.dropout(self.relu(x1000))
x10 = self.fc1(x10)
x10 = self.output(x10)
return x10, x1000 #增加输出
model = Model(net).cuda()
out10, out1000 = model(inputs, add_var)
PyTorch存储模型主要采用pkl,pt,pth三种格式。
PyTorch模型主要包含两个部分:模型结构和权重。
存储也可分为两种形式:
from torchvision import models
model = models.resnet152(pretrained=True)
# 保存整个模型
torch.save(model, save_dir)
# 保存模型权重
torch.save(model.state_dict, save_dir)
当出现多GPU并行时存储读取会有单卡、多卡情况,而多卡存储过程名称比单卡多module字段,故当多卡存储时,模型加载会复杂一些。
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #这里替换成希望使用的GPU编号
model = models.resnet152(pretrained=True)
model.cuda()
# 保存整个模型
torch.save(model, save_dir)
# 保存模型权重
torch.save(model.state_dict(), save_dir)
用nn.DataParallel函数进行分布式训练设置即可
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2' #这里替换成希望使用的GPU编号
model = models.resnet152(pretrained=True)
model = nn.DataParallel(model).cuda()
# 保存整个模型
torch.save(model, save_dir)
# 保存模型权重
torch.save(model.state_dict(), save_dir)
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #这里替换成希望使用的GPU编号
# 读取整个模型
loaded_model = torch.load(save_dir)
loaded_model.cuda()
# 读取模型权重
loaded_dict = torch.load(save_dir)
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model.state_dict = loaded_dict
loaded_model.cuda()
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #这里替换成希望使用的GPU编号
# 读取整个模型
loaded_model = torch.load(save_dir)
loaded_model = loaded_model.module #不同之处
# 读取模型权重(推荐)
loaded_dict = torch.load(save_dir)
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model = nn.DataParallel(loaded_model).cuda() #不同之处
loaded_model.state_dict = loaded_dict
# 读取模型权重(其他方法1)
from collections import OrderedDict
loaded_dict = torch.load(save_dir)
# 去除module字段
new_state_dict = OrderedDict()
for k, v in loaded_dict.items():
name = k[7:] # module字段在最前面,从第7个字符开始就可以去掉module
new_state_dict[name] = v #新字典的key值对应的value一一对应
# 其他与单卡保存模型一致
loaded_model = models.resnet152()
loaded_model.state_dict = new_state_dict
loaded_model = loaded_model.cuda()
# 读取模型权重(其他方法2)
loaded_model = models.resnet152()
loaded_dict = torch.load(save_dir)
loaded_model.load_state_dict({k.replace('module.', ''): v for k, v in loaded_dict.items()})
loaded_model = loaded_model.cuda()
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '1,2' #这里替换成希望使用的GPU编号
# 读取整个模型
loaded_model = torch.load(save_dir)
loaded_model = nn.DataParallel(loaded_model).cuda()#不同处
# 读取模型权重
loaded_dict = torch.load(save_dir)
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model.state_dict = loaded_dict
loaded_model = nn.DataParallel(loaded_model).cuda()#不同处
import os
import torch
from torchvision import models
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2' #这里替换成希望使用的GPU编号
loaded_whole_model = torch.load(save_dir)
loaded_model = models.resnet152() #注意这里需要对模型结构有定义
loaded_model.state_dict = loaded_whole_model.state_dict
loaded_model = nn.DataParallel(loaded_model).cuda()
datawhale:深入浅出pytorch