- 【水果识别】SVM水果成熟检测系统(含苹果 香蕉 橙子)【含GUI Matlab源码 11052期】含报告
Matlab武动乾坤
Matlab图像处理(进阶版)matlab
Matlab武动乾坤博客之家博主简介:985研究生,Matlab领域科研开发者;座右铭:行百里者,半于九十。代码获取方式:CSDNMatlab武动乾坤—代码获取方式更多Matlab图像处理仿真内容点击①Matlab图像处理(进阶版)⛳️关注CSDNMatlab武动乾坤,更多资源等你来!!⛄一、SVM水果成熟检测系统SVM(支持向量机)水果成熟检测系统的原理和流程如下:原理:1SVM是一种监督学习算
- 五款图片变清晰工具帮助你,轻松实现一键修复模糊图片
Ai工具分享
人工智能
在日常生活中,我们难免会遇到图片模糊的情况,无论是年代久远的老照片因分辨率不足而显得模糊,还是在拍摄瞬间因轻微手抖导致的画面不清晰,这些问题都大大影响了图片的观赏价值。那么,面对这些模糊的图片,我们该如何让它们重焕新生,变得清晰明朗呢?接下来,我们就来介绍五款出色的软件,它们具备强大的图像处理能力,能够帮助你轻松实现一键修复模糊图片,让你的珍贵记忆恢复原有的清晰与生动。一、牛学长图片修复工具牛学长
- 【Python】深入探讨Python中的单例模式:元类与装饰器实现方式分析与代码示例
蒙娜丽宁
Python杂谈python单例模式开发语言
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界单例模式(SingletonPattern)是一种常见的设计模式,它确保一个类只有一个实例,并提供一个全局访问点。在Python中,实现单例模式的方式多种多样,包括基于装饰器、元类和模块级别的单例实现。本文将详细探讨这些实现方式,并通过大量代码示例进行演
- 【人工智能】Python实战:构建高效的多任务学习模型
蒙娜丽宁
Python杂谈AI人工智能python学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界多任务学习(Multi-taskLearning,MTL)作为机器学习领域中的一种重要方法,通过在单一模型中同时学习多个相关任务,不仅能够提高模型的泛化能力,还能有效利用任务间的共享信息。本文深入探讨了多任务学习的基本概念、优势及其在实际应用中的重要性。
- 基于纵横交叉算法优化的最小交叉熵图像多阈值分割 python
图像算法打怪
图像分割算法python开发语言
基于纵横交叉算法优化的最小交叉熵图像多阈值分割python文章目录基于纵横交叉算法优化的最小交叉熵图像多阈值分割python1.最小交叉熵阈值分割原理2.基于纵横交叉优化的多阈值分割3.算法结果:4.参考文献:5.Python代码摘要:本文介绍基于最小交叉熵的图像分割,并且应用纵横交叉算法进行阈值寻优。1.最小交叉熵阈值分割原理1993年,Li等人将交叉熵的概念引入到图像处理领域,提出了基于一维灰
- 机器视觉在医疗影像分析中的应用:助力放射科医生精准诊断
人工智能专属驿站
大数据人工智能计算机视觉
在现代医疗领域,影像学检查如X光、CT扫描和MRI等是诊断疾病的重要手段。随着技术的不断发展,机器视觉算法在医疗影像分析中的应用日益广泛,为放射科医生提供了强大的辅助工具,极大地提高了诊断的准确性和效率。本文将探讨机器视觉在医疗影像分析中的具体应用及其对医疗诊断带来的变革。一、机器视觉算法简介机器视觉是一种模拟人类视觉的科学技术,通过图像处理、模式识别和计算机视觉等技术,使计算机能够“看”懂图像中
- matlab程序代编程写做代码图像处理BP神经网络机器深度学习python
matlabgoodboy
深度学习matlab图像处理
1.安装必要的库首先,确保你已经安装了必要的Python库。如果没有安装,请运行以下命令:bash复制代码pipinstallnumpymatplotlibtensorflowopencv-python2.图像预处理我们将使用OpenCV来加载和预处理图像数据。假设你有一个图像数据集,每个类别的图像存放在单独的文件夹中。python复制代码importosimportcv2importnumpya
- 每日读码1 Unity GL
hookby
每日读码unity
//一般在渲染函数里实现,比如:OnPostRender()/*相机后处理*/,OnRenderImage()/*图像处理*/voidOnRenderImage(RenderTexturesrc,RenderTexturedst){Vector3toRight=cameraTransform.right*halfHeight*aspect;Vector3toTop=cameraTransform.
- 国自然青年项目|基于多模态影像组学的乳腺癌分子分型预测研究|基金申请·25-01-20
罗小罗同学
基金申请医学人工智能人工智能国自然
小罗碎碎念今天和大家分享一份国自然青年项目,项目执行期为2021-2023年,直接费用为24万。项目聚焦乳腺癌分子分型预测,综合运用多模态组学数据、影像组学技术和深度学习技术。研究内容包括跨模态医学图像分割、多模态特征提取与融合、模型设计与系统研发。通过提出一系列创新算法,如基于类别中心原型对齐器的图像分割算法、基于自注意力机制与生成对抗网络的聚类算法等,实现了对乳腺癌分子分型的高精度预测,并开发
- ACNet:深度学习中的自适应卷积网络新星
郎轶诺
ACNet:深度学习中的自适应卷积网络新星项目地址:https://gitcode.com/gh_mirrors/ac/ACNet在深度学习领域,卷积神经网络(CNN)一直是图像处理和计算机视觉任务的核心技术。然而,传统的固定大小的卷积核无法灵活适应不同区域的信息密度。针对这一问题,ACNet(AdaptiveConvolutionNetwork)项目应运而生,它引入了一种新型的自适应卷积层,旨在
- 使用QT+OpenCV+C++完成一个简单的图像处理工具
17´
机器视觉Qtc++qtopencvc++图像处理
目录前言初始化UI界面qss样式表优化界面QImage和Mat的类型转换按钮功能实现读取图像处理图像保存图像最终效果前言本项目在QtCreator中编写,使用qmake来配置OpenCV库,具体配置方法请看这篇文章从0到机器视觉工程师(六):配置OpenCV和Qt环境-CSDN博客,UI界面使用代码的形式书写。接下来,让我们一起来完成这个项目吧。初始化UI界面代码boolMainWindow::I
- VM-UNet: 基于Vision Mamba UNet的医学图像分割项目推荐
翟洁英
VM-UNet:基于VisionMambaUNet的医学图像分割项目推荐VM-UNet项目地址:https://gitcode.com/gh_mirrors/vm/VM-UNet1.项目基础介绍和主要编程语言VM-UNet是一个基于VisionMambaUNet架构的开源项目,专门用于医学图像分割。该项目的主要编程语言是Python。VM-UNet结合了状态空间模型(StateSpaceModel
- 简单线性插值去马赛克算法的Python实现
大DA_辉
ISP图像处理_pythonpython计算机视觉人工智能
在图像处理领域中,去马赛克(Demosaicing)是一项关键技术,用于从单色彩滤波阵列(CFA)图像恢复全彩图像。本文将介绍一种简单的线性插值去马赛克算法,并将其从MATLAB代码转换为Python代码。最终结果将展示如何从Bayer格式的图像数据恢复出RGB全彩图像。什么是马赛克图像?马赛克图像是一种通过在传感器上覆盖彩色滤光片阵列(CFA)生成的单通道图像。最常见的CFA模式是Bayer模式
- GAN在图像增强中的应用实战指南
码字仙子
本文还有配套的精品资源,点击获取简介:图像增强技术通过算法改善图像质量,GAN作为一种生成对抗网络,在此领域具有重要应用。通过生成器和判别器的对抗性训练,GAN可以生成逼真图像、修复低质量图像、扩增数据集并进行风格迁移。本项目将介绍如何使用Python及其相关库实现GAN图像增强,包括模型的构建、训练和评估。通过项目案例学习,你可以掌握GAN在图像增强中的实际应用,提高图像处理和深度学习的技能。1
- 利用双分支CycleGAN进行图像数据的高效增强
jizhi-dataset
人工智能
随着人工智能技术的快速发展,图像数据处理变得越来越重要。为了提高图像数据的质量和可用性,我们需要采用高效的数据增强方法。双分支CycleGAN网络作为一种先进的图像处理技术,为我们提供了一种全新的解决方案。本文将详细介绍双分支CycleGAN的工作原理,并展示其在图像数据增强方面的实际效果。同时,我们也将讨论在实际应用过程中可能遇到的挑战以及如何解决这些问题。,,CycleGAN是一种用于图像到图
- AI绘画工具介绍
编程小郭
ai作画
市面上AI绘画工具众多,它们利用深度学习和图像处理技术,为用户提供了丰富的创作体验和可能性。以下是对几款主流AI绘画工具的详细介绍及横向对比:一、主流AI绘画工具介绍Midjourney简介:Midjourney是一个独立的研究实验室,专注于人工智能绘图,被广泛应用于设计、艺术创作、广告制作等领域。特点:以其强大的图像生成能力和跨界融合的创新特点著称,能够根据文本描述和视觉输入生成兼具故事性与视觉
- DICOM图像处理:深入解析DICOM彩色图像中的Planar配置及其对像素数据解析处理的实现
猿享天开
DICOM医学影像知识图像处理医学影像DICOMPlanar
引言在DICOM(DigitalImagingandCommunicationsinMedicine)标准中,彩色图像的存储与显示涉及多个关键属性,其中**PlanarConfiguration(平面配置)**属性(标签(0028,0006))尤为重要。当遇到彩色DICOM图像在浏览时被错误地分割为9张小图,而实际应显示为一张完整的图像的问题,很可能与PlanarConfiguration属性的解
- 深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术
wit_@
cnnpython机器学习深度学习scikit-learn
深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术导语卷积神经网络(CNN)是现代深度学习领域中最重要的模型之一,特别在计算机视觉(CV)领域具有革命性的影响。无论是图像分类、目标检测,还是人脸识别、语音处理,CNN都发挥了举足轻重的作用。随着技术的不断发展,CNN已经成为了解决众多实际问题的核心工具。但对于许多人来说,CNN仍然是一个相对复杂的概念,尤其是初学者可能会被其背后的数学原
- 集成AI离线免费,全平台毫秒级快速处理!
纪元A梦
资源分享人工智能科技电脑软件抠图
随着PS技术的发展,大家对图像的要求和处理更加的多样化,其中,抠图作为一种常见的图像处理操作,并不是每个小伙伴都完全掌握PS技能,对于那些复杂的抠图操作往往会显得捉襟见肘,近两年随着AI技术的进步,各类软件都和AI集合,希望通过AI快速、高效的实现某些操作;分享一款免费、离线并且内嵌AI模型的抠图工具:鲜艺AI抠图v3.1;获取方式:https://pan.baidu.com/s/1gej6HL4
- 3D UNet和Swin-UNETR
学無芷境
计算机视觉
3DUNet和Swin-UNETR都是用于医学图像分析的深度学习网络,它们对三维(3D)数据进行特征提取和分割。3DUNet3DUNet是UNet架构的一个变体,专门设计用于处理三维医学图像数据。UNet最初是为二维(2D)图像分割任务设计的,具有典型的编码器-解码器结构。3DUNet扩展了这种架构,以便更好地处理具有深度信息的体积数据,如CT或MRI扫描。主要特点:编码器:逐渐下采样图像,提取并
- 推荐3D UNet实现:深度学习3D体素数据语义分割的利器!
滑辰煦Marc
推荐3DUNet实现:深度学习3D体素数据语义分割的利器!去发现同类优质开源项目:https://gitcode.com/在这个快速发展的深度学习时代,3DUNet已经成为3D图像处理领域中不可或缺的工具,尤其在医疗影像分析和3D物体识别等任务上展现出强大的潜力。这个开源项目为我们提供了一个高效、灵活的3DUNet实现,支持Tensorflow、PyTorch和Chainer三种主流深度学习框架。
- 3D U-Net CNN医学图像分割项目教程
尤辰城Agatha
3DU-NetCNN医学图像分割项目教程3DUnetCNNPytorch3DU-NetConvolutionNeuralNetwork(CNN)designedformedicalimagesegmentation项目地址:https://gitcode.com/gh_mirrors/3d/3DUnetCNN1.项目介绍3DU-NetCNN是由Ellisdg开发的Python实现,专门用于医学图像
- MATLAB语言的计算机基础
疯狂小小小码农
包罗万象golang开发语言后端
MATLAB语言的计算机基础引言在当今信息技术飞速发展的时代,编程能力已成为当代人士必备的一项基本技能。MATLAB(矩阵实验室)作为一种高级编程语言和环境,广泛应用于数据分析、算法开发、模型创建、数字图像处理和计算机视觉等多个领域。MATLAB以其强大的矩阵运算和可视化能力,成为了科研人员和工程师的重要工具,尤其在数学、物理、工程等学科中,它的应用不可或缺。本文将从MATLAB的基本概念、环境搭
- 大数据最新医学图像分割 3D nnUNet全流程快速实现_医学图像分割步骤
2401_84182020
程序员大数据
第一步:选择一个你能找的路径位置(这很重要),在这个位置打开终端,输入gitclonehttps://github.com/MIC-DKFZ/nnUNet.git,将nnUNet的代码下载到这个位置第二步:终端内定位到下载的nnUNet文件夹cdnnUNet,或者直接在对应位置打开终端第三步:开始安装,pipinstall-e.2数据整理2.1数据存放形式首先,nnUNet有自己的一套数据文件夹的
- 2025年Photoshop详细教程:从新手到高手,手把手带你学PS
Java徐师兄
photoshopPhotoshop教程Photoshop视频教程Photoshop入门教程Photoshop入门视频教程
2025年Photoshop详细教程:从新手到高手,手把手带你学PS大家好!今天给大家带来一份超实用的2025年Photoshop入门教程,让你从零开始,快速掌握PS的基础操作!如果你是图像处理小白,或者刚刚接触Photoshop的新手,那么这套课程就是专门为你量身定制的哦!这套课程叫做《PS教程-小白系统入门课》,包含了16节高质量的视频教程,搭配丰富的练手素材,跟着我一起,一步步深入了解Pho
- 【机器学习:二十九、K-means算法:原理与应用】
KeyPan
机器学习机器学习算法kmeans人工智能神经网络深度学习数据挖掘
1.K-means概述K-means是一种经典的无监督学习算法,广泛应用于数据聚类任务。其核心思想是将数据集划分为kkk个簇,使得每个簇内的样本尽可能相似,同时不同簇之间尽可能不同。K-means的简单性和高效性使其在模式识别、图像处理、市场分析等领域具有广泛应用。核心思想基于欧几里得距离度量数据点之间的相似性。不断优化簇中心位置,最小化簇内样本与其中心点之间的总距离(即误差平方和,SSE)。适用
- 学生福利!Edu邮箱助你免费畅用设计软件
明 庭
adobeideaintellij-ideaintellijidea
作为一名学生,想要学习和使用专业的图像处理、设计软件,但高昂的软件费用往往让人望而却步。其实,有一个简单的方法可以让你免费享用这些强大的工具——那就是利用你的Edu教育邮箱。Edu邮箱是什么?Edu邮箱是教育机构颁发给在校学生和教职员工的邮箱,通常以“.edu”结尾。凭借这个邮箱,你可以验证自己的学生身份,从而申请免费使用许多知名的软件。哪些软件可以用Edu邮箱免费申请?Adobe系列软件:Pho
- 3D卷积神经网络:原理、应用与深入解析
从零开始学习人工智能
cnn人工智能神经网络目标跟踪3dopencv
3D卷积原理3D卷积,或称为三维卷积,是卷积神经网络(CNN)中的一种技术,用于处理三维数据,如医学图像(如MRI、CT扫描)或视频数据。与标准的二维卷积(处理图像)不同,3D卷积在三个维度(通常是深度、高度和宽度)上操作。在这个图示中,我们可以看到一个3x3x3的卷积核(也称为滤波器或特征检测器)在一个5x5x5的输入数据块上滑动。在每个位置,卷积核与其覆盖的输入数据块的部分进行元素乘法并求和,
- SpringBoot一键提取身份证与营业执照信息
一名技术极客
#java相关工具类springboot后端java
SpringBoot一键提取身份证与营业执照信息使用的工具和库步骤和代码示例添加依赖图像预处理和文字识别信息提取使用OpenCV对图像进行预处理OpenCV图像预处理示例集成到OCR服务中在SpringBoot中实现图片中的身份证号、营业执照等信息的识别,可以分为以下几个步骤:图像预处理:为了提高识别的准确性,首先对图片进行预处理,如调整大小、对比度、亮度等。文字检测:使用图像处理算法或框架来定位
- 内核详细知识
「已注销」
基础知识
支持这个网站。捐。Search内核(操作系统)有关其他用途,请参阅内核(消歧)。“内核(计算)”重定向到这里。有关其他用途,请参阅内核(消歧)。“核心(计算机科学)”重定向到这里。不要与Compute内核,内核方法或内核(图像处理)混淆。该内核是一个计算机程序是计算机的核心操作系统,拥有系统的一切完全控制。[1]在大多数系统中,它是启动时加载的第一个程序之一(在引导加载程序之后)。它处理剩余的启动
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟