yolo模型解析方法parse_model

目录

代码:

创建一个yaml加载方法

测试

 模型修改:

        一:backbone加一层卷积

二:head加一个上采样层

 模型修改2:

        使用vgg块:


代码:

def parse_model(d, ch):  # model_dict, input_channels(3)
    # Parse a YOLOv5 model.yaml dictionary
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            with contextlib.suppress(NameError):
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
            Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
            BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        # TODO: channel, gw, gd
        elif m in {Detect, Segment}:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            if m is Segment:
                args[3] = make_divisible(args[3] * gw, 8)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

创建一个yaml加载方法

def load_yaml(path):
    if isinstance(path, dict):
        yaml = path
    else:
        import yaml
        yaml_file_name = Path(path).name
        with open(path, encoding='utf-8', errors='ignore') as f:
            yaml = yaml.safe_load(f)
    return yaml, yaml_file_name

测试

    modelDict, f = load_yaml(opt.cfg)
    i, i1 = parse_model(modelDict, [3])
    print(i)

yolo模型解析方法parse_model_第1张图片

 模型修改:

        

        一:backbone加一层卷积

              列如:yolo模型解析方法parse_model_第2张图片

         执行打印之后:

        yolo模型解析方法parse_model_第3张图片

 可以看到新加的模型被添加进去了:至于输出为什么1024 不是2048. 这里受宽度参数调节的

width_multiple: 0.5  

二:head加一个上采样层

        

head:
  [[-1, 1, Conv, [1024, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
   [-1, 3, C3, [1024, False]],  # 15

   [-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 19 (P3/8-small)

   [ -1, 1, Conv, [ 256, 1, 1 ] ],
   [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
   [ [ -1, 4 ], 1, Concat, [ 1 ] ],  # cat backbone P3
   [ -1, 3, C3, [ 256, False ] ],  # 23 (P3/8-small) 感受野最大 预测小物体

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 20], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 16], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 29 (P5/32-large)

   [ -1, 1, Conv, [ 1024, 3, 2 ] ],
   [ [ -1, 12 ], 1, Concat, [ 1 ] ],  # cat head P5
   [ -1, 3, C3, [ 2048, False ] ],  # 32 (P5/32-large)

   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)

测试

    device = select_device(opt.device)
    im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
    m = Model(opt.cfg)
    model = Model(opt.cfg).to(device)
    r = model(im, profile=True)

输出结果

yolo模型解析方法parse_model_第4张图片

 模型修改2:

        使用vgg块:

        1:定义一个vgg块:

        

class Vgg(nn.Module):
    def __init__(self, in_channels, out_channels, num_convs=2):
        super().__init__()
        layers = []
        for _ in range(num_convs):
            layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
            layers.append(nn.SiLU())
            in_channels = out_channels
        self.vgg = nn.Sequential(*layers)

    def forward(self, x):
        return self.vgg(x)
2 : parse_model函数 如下添加

        

        if m in {
            Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
            BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, Vgg}:
            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x, Vgg}:

3:修改yaml

backbone:
  # [from, number, module, args [输出, 核大小, 步长, 填充]]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, Vgg, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [ -1, 1, Conv, [ 2048, 3, 2 ] ],  # 9-P6/64
   [ -1, 3, C3, [ 2048 ] ],
   [-1, 1, SPPF, [2048, 5]],  # 11
  ]

结果:

yolo模型解析方法parse_model_第5张图片

 

你可能感兴趣的:(python,开发语言)