- CNN-GRU混合模型学习笔记
weixin_54372988
cnngru学习
GRU学习笔记CNN:卷积神经网络GRU(GateRecurrentUnit),门控循环单元CNN:卷积神经网络3个组成部分:1.卷积层——提取图像局部特征2.池化层——降维(防止过拟合)3.全连接层——输出结果一个卷积核扫完整张图片,得到每个小区域的特征值具体应用中通常有多个卷积核CNN可能有多层结构,如LeNet-5:卷积层–池化层–卷积层–池化层–卷积层–全连接层处理时间序列(1D序列):(
- CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
Matlab科研辅导帮
cnngru人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。个人主页:Matlab科研工作室个人信条:格物致知,求助可私信。内容介绍多变量时序预测在诸多领域扮演着至关重要的角色,例如金融、气象和工业控制等。近年来,深度学习方法在时序预测任务中取得了显著的进展。本文旨在系统地比较四种基于卷积神经网络(CNN)和循环神经网络(GRU)的不同架构,包
- Kyle的天机学堂学习笔记
Z2475269074
学习笔记
本文将展示一个小白从0->1完成项目的全部历练已经心得PS:要求做到真正的自我思考而不是对着教程敲代码,并借用AI进行辅佐与思考DAY1Maven子工程会继承父工程所有依赖有三套生命周期,互不干扰且同一生命周期内执行命令会以此完成之前的命令1.clean2.default(compile,test,package,install)3.site(deploy)对象DTO数据传输对象,用于服务端与客户
- DeepSeek:AI驱动的效率革命与实战案例解
weixin_45788582
人工智能aiDeepSeek
在人工智能技术的浪潮中,DeepSeek作为一款专注实现AGI(通用人工智能)的先锋工具,正通过其强大的自然语言处理(NLP)与分布式计算能力,重新定义高效办公的边界。以下通过技术解析与实战案例,展现DeepSeek如何赋能个人与企业,开启职场效率革命。一、技术革新:DeepSeek的核心竞争力深度学习赋能DeepSeek的技术架构基于BERT、Transformer等先进深度学习模型,通过构建复
- WPF学习笔记(6)——WPF+Stylet+MVVM:ListBox添加项、获取所选项、删除项、删除所选项
billy_gisboy
#WPF/MVVMwpfmvvmc#
功能描述使用Stylet框架,对WPF进行MVVM模式下的开发。不在xaml.cs中写业务逻辑,业务逻辑均在VM中,且业务逻辑只针对属性,不涉及ListBox控件。实现功能:(1)ListBox添加一个项,项具有图片、信息(2)展示一个所选项的信息(3)删除一个项(4)删除所选项实现效果首先创建学生类namespaceStyletTest.Model{publicclassStudent{////
- AI驱动的智能电网:平衡供需提高效率
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
智能电网,AI,机器学习,预测模型,优化算法,供需平衡,能源效率1.背景介绍随着全球能源需求的不断增长和可再生能源的快速发展,传统电网面临着越来越多的挑战。传统的电网结构是集中式供电,难以适应分布式能源的接入和负荷需求的波动性。智能电网应运而生,它利用先进的通信技术、传感器网络和数据分析技术,实现电网的自动化、智能化和可视化,从而提高电网的可靠性、效率和安全性。人工智能(AI)作为一种新兴技术,在
- WPF学习笔记(8)数据绑定方向与INotifyPropertyChanged
三千道应用题
WPF学习笔记wpf
数据绑定方向与INotifyPropertyChanged一、数据绑定方向1.OneWayToSource2.OneWay3.TwoWay二、INotifyPropertyChanged总结一、数据绑定方向Binding类的Mode属性可以指定数据绑定的方向:官方文档:https://learn.microsoft.com/zh-cn/dotnet/api/system.windows.data.
- 从HTML4到HTML5+CSS3,如何快速掌握?(有老版HTML基础或经验)
唐骁虎
html前端
从HTML4.0到HTML5+CSS3的升级是Web开发技术的一次重要迭代,两者在语法、功能、兼容性等方面存在显著差异。以下是具体异同点、学习注意事项及快速掌握方法:一、HTML5与HTML4.0的核心差异语义化标签HTML5新增:、、、、等,使代码结构更清晰,利于SEO和可维护性。HTML4.0依赖:主要用配合class/id实现布局,语义性较弱。多媒体支持HTML5原生支持:、标签,无需依赖F
- 【小白Java进阶之路】 2024年Java小白如何成为大牛?超详细学习路线图!
全栈陈序员
Java后端开发java学习windows
??2024年Java小白如何成为大牛?超详细学习路线图!摘要本文为Java初学者提供了一份详细的学习路线图,旨在帮助他们从基础到进阶,最终成为Java领域的专家。文章涵盖了Java基础、进阶技术、Web开发、框架与工具、软技能等多个方面,并提供了代码示例、流程图和表格,以增强理解和实践能力。关键词Java,学习路线图,进阶,Web开发,框架,工具,软技能1.Java基础1.1语法基础变量和数据类
- Java进阶学习
m0_67403013
面试学习路线阿里巴巴android前端后端
进阶学习过程的几个方面第一阶段的学习是java基础的学习和javaEE的学习。第二阶段就是java学习的进阶啦。主要是面试书籍,下面是书籍推荐:多线程、并发实战java高并发程序设计和java并发编程的艺术:——“java高并发程序设计”,这本书主要是为了看第二本书做铺垫,直接看第二本书可能会很吃力。实战java高并发程序设计主要看:前4章、5.1、5.2、5.3、5.10、5.11和第6章。——
- JAVA进阶之路
夜澜听雨声
JavaAdvancejava开发语言
JAVA进阶之路一、Java企业开发基础1.JavaWeb2.SSM框架3.Maven4.Springboot25.mybatis-plus6.前端学习(不算很重要)7.SpringSecurity(有时间再看,不重要)8.代码开发规范(不重要,有时间看)9.Git10.Linux(不重要,会用就行)二、Java企业开发进阶1.设计模式2.Redis(核心)3.消息队列RocketMQ(核心)4.
- 阿里一面凉经
一入JAVA毁终身
面试记录面试
阿里一面(凉经)先说明我大二开始接触计算机学习总共不到两年,很菜加上我比较容易紧张,所以回答的有些不尽人意,事后反思了一下确实很多地方是有问题的,大家如果看出什么问题请告知我一下,我一定虚心接受。1.主体的流程自我介绍(不过多赘述了)挑选一个项目进行深入探讨八股拷打算法2.项目拷打在自我介绍里我大概介绍了一下我的三个项目,相比字节的面试官明显流程更加固定,而且也更正式,不会会和你多聊一些学习方面的
- Python爬虫实战:使用Scrapy+Selenium+Playwright高效爬取Coursera课程信息
Python爬虫项目
2025年爬虫实战项目python爬虫scrapy微信开发语言科技selenium
前言在当今信息爆炸的时代,在线教育平台如Coursera提供了海量的高质量课程资源。对于学习者、教育研究者和数据分析师来说,获取这些平台的课程信息具有重要价值。本文将详细介绍如何使用Python爬虫技术高效爬取Coursera课程信息,并分析其中的技术难点与解决方案。1.Coursera网站分析Coursera是一个典型的现代Web应用,具有以下特点:采用React/Vue等前端框架构建,大量内容
- AI 技术&AI开发框架
34号树洞
人工智能深度学习人工智能机器学习NLPGAI
目录一、AI技术及其开发框架1.AI技术分类与代表方向2.主流AI开发框架3.AI应用开发流程简述4.补充:基础依赖与生态二、AI技术方向1.机器学习(MachineLearning,ML)✦核心概念:✦关键方法:✦应用案例:2.深度学习(DeepLearning,DL)✦核心概念:✦网络结构举例:✦技术趋势:3.自然语言处理(NLP)✦核心任务:✦代表模型:4.计算机视觉(ComputerVis
- 建议是先把base完全搞懂
weixin_47868976
Web云存储项目网络
并发编程日志系统啥的我只了解了一点点直接从网络层入手这个项目可行么?底层base模块没搞懂从web开始合理么?你的担心很有道理!让我来分析一下学习路径的可行性,并给你一个合理的学习建议。一、项目依赖关系分析1.模块依赖层次application/(应用层)↓强依赖net/(网络层)↓强依赖base/(基础层)↓强依赖系统调用(LinuxAPI)2.具体依赖关系Rantool从依赖分析可以看出,网络
- 同步日志系统深度解析【链式调用】【宏定义】【固定缓冲区】【线程局部存储】【RAII】
weixin_47868976
链表python
你的理解完全正确!让我结合你的项目,深入讲解同步日志的实现原理和代码。同步日志系统深度解析开始之前:没有必要一行一行理解!没有必要一行一行理解!我建议你采用更高效的学习策略:一、学习策略建议重点理解核心概念和设计思路//只需要理解这些核心概念:1.RAII模式:构造函数获取资源,析构函数释放资源2.链式调用:operatorstream()output();//手动调用输出deletelogger
- 数据分析案例-全球表面温度数据可视化与统计分析
艾派森
数据分析信息可视化python数据分析数据挖掘
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍
- Qt 各种功能学习笔记
栈不收
qt学习笔记
目录1.Qt关于数据库1.1Qt链接数据库1.2将数据库的模型显示在控件中2.Qt关于控件2.1用正则表达式设置输入框只能输入正浮点数2.2设置QDateTimeEdit的时间格式和设置为当前时间1.Qt关于数据库1.1Qt链接数据库基础教学:使用Qt链接MySql数据库_qt连接mysql_栈不收的博客-CSDN博客需要注意的问题:在链接MySQL的时候,首先要确保MySQL已经安装成功在目录Q
- 机器学习算法——神经网络1(神经元模型)
神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。神经网络中最基本的成分是神经元(neuron)模型。即上述定义中的“简单单元”。在生物神经网络中,每个神经元与其他申请元相连,当它“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过一个“阈值”,那么它就会被激活,即“兴奋”起来,向其他神经
- Python 数据分析实践经验与学习心得
lzzy_sj_0999
python数据分析开发语言
在当今数据驱动的时代,Python以其丰富的库和便捷的语法,成为数据分析领域的首选语言。本文将结合实际案例,分享Python数据分析的学习心得与实践经验,涵盖数据读取、清洗、分析及可视化等关键环节,希望能为大家的学习和工作提供帮助。一、数据分析必备库介绍在Python数据分析中,有几个核心库是必须掌握的,它们就像我们手中的“神兵利器”,能够高效完成各种数据分析任务。Pandas:用于数据处理和分析
- 心跳报文 - Linux C++网络编程(二十八)
生活需要深度
linux内核网络编程
一:前面学习的总结核心架构浓缩总结实现的功能:(1)服务器按照包头包体格式正确的接收客户端发送过来的数据包;(2)根据手动的包的不同来执行不同的业务处理逻辑;(3)把业务处理产生的结果数据包返回客户端;咱们用到的主要技术(1)epoll高并发通讯技术(2)线程池技术来处理业务逻辑(3)线程之间的同步技术包括互斥量、信号量其他技术:信号,日志打印,fork()子进程,守护进程借鉴了哪些官方nginx
- 【学习】《算法图解》第八章学习笔记:平衡树
自学也学好编程
程序人生
前言在上一章中,我们学习了二叉搜索树(BST)的基本概念和操作。虽然BST在平均情况下提供了O(logn)的搜索、插入和删除效率,但在最坏情况下(如按顺序插入数据),它可能退化为链表,导致操作效率降为O(n)。为了解决这个问题,《算法图解》第八章介绍了平衡树的概念和几种主要的平衡树结构,这些结构能够在各种情况下保持较好的平衡性,确保操作的高效性。一、平衡树的基本概念(一)什么是平衡树平衡树是一种特
- 【分治算法】【Python实现】Strassen矩阵乘法
「已注销」
#分治算法分治算法Python
文章目录@[toc]问题描述基础算法时间复杂性Strassen算法时间复杂性问题时间复杂性Python实现个人主页:丷从心·系列专栏:分治算法学习指南:算法学习指南问题描述设AAA和BBB是两个n×nn\timesnn×n矩阵,AAA和BBB的乘积矩阵CCC中元素cij=∑k=1naikbkjc_{ij}=\displaystyle\sum\limits_{k=1}^{n}{a_{ik}b_{kj
- 人名分类器(RNN案例)
Turbo_O.
rnn深度学习人工智能
案例介绍:人名分类案例是多分类问题,根据人名预测属于哪个国家人名->x,国家->y监督学习,历史数据中已知y案例步骤:1.数据预处理获取常用字符以及国家类别#导入torch工具fromcProfileimportlabelimporttorch#导入nn准备构建模型importtorch.nnasnnimporttorch.optimasoptimfromjax.experimental.rnni
- 【深度学习|冰川制图3】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构
努力毕业的小土博^_^
论文推荐深度学习学习架构人工智能机器学习
【深度学习|冰川制图3】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构【深度学习|冰川制图3】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构文章目录【深度学习|冰川制图3】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构引言欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上岸上岸上岸!upupup大多数高校硕博生毕业要求需要参加学术会议,发
- 【深度学习|冰川制图4】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构
努力毕业的小土博^_^
论文推荐深度学习学习架构人工智能
【深度学习|冰川制图4】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构【深度学习|冰川制图4】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构文章目录【深度学习|冰川制图4】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构数据与方法2.1数据欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上岸上岸上岸!upupup大多数高校硕博生毕业要求需要
- 【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构
努力毕业的小土博^_^
优秀论文推荐深度学习学习人工智能
【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构文章目录【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构数据与方法2.2深度学习模型2.2.1GlacierNet模型2.2.2DeepLabV3+模型欢迎铁子们点赞、关注、收藏!祝大
- 【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?
努力毕业的小土博^_^
机器学习基础算法优质笔记2深度学习学习笔记人工智能
【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?文章目录【深度学习|学习笔记】什么是k折交叉验证?K折交叉验证的步骤详解?以及如何在K折交叉验证中选择k?一、什么是K折交叉验证?✅目的:二、K折交叉验证的发展背景三、K折交叉验证的步骤详解步骤如下:数学
- 【深度学习|学习笔记】网格搜索(GridSearchCV)和随机搜索(RandomizedSearchCV)详解,附代码。
努力毕业的小土博^_^
深度学习学习笔记深度学习学习笔记机器学习人工智能
【深度学习|学习笔记】网格搜索(GridSearchCV)和随机搜索(RandomizedSearchCV)详解,附代码。【深度学习|学习笔记】网格搜索(GridSearchCV)和随机搜索(RandomizedSearchCV)详解,附代码。文章目录【深度学习|学习笔记】网格搜索(GridSearchCV)和随机搜索(RandomizedSearchCV)详解,附代码。一、背景与发展:为什么需要
- 超详细【WEB应用安全测试指南--蓝队安全测试1】--超级详细的安全测试渗透性测试知识点--可直接上手进行对应的安全测试!!!!!!
生活De°咸鱼
安全专栏前端安全性测试web安全安全威胁分析
一、概述1.1、编写目的结合公司的内部人员培养体系,本手册旨在为安全测试人员提供测试指导,安全测试人员通过查阅该指南可快速掌握Web应用安全测试,提高工作能力。1.2、使用范围本文适用于Web应用安全测试人员1.3、注意事项本文旨在为测试人员提供漏洞测试的基本思路,随着安全技术的发展,更多的新漏洞和测试方法将被爆出,安全测试人员应该具备不断学习新知识的能力。二、Web应用安全测试指南2.1、认证授
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比