FasterRCNN模型结构——pytorch实现

论文传送门:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

FasterRCNN的目的:

完成目标检测任务。

FasterRCNN的改进:

相较于FastRCNN,提出了anchor的概念和RPN结构来取代SS(Selective Search)算法产生候选区域(region proposal),大大加快了模型的推理时间,并提高了目标检测任务的精度。

FasterRCNN的结构:

Backbone:对输入图像(input images)使用卷积层(conv layers)进行特征提取,得到特征层(feature maps);
Region Proposal Network(RPN):由特征层和预先设定的anchors,生成候选区域(region proposal/roi);
Head:在特征层上对候选区域进行roi pooling,再经过分类器(classifier),输出候选区域的类别置信度和回归参数。
FasterRCNN模型结构——pytorch实现_第1张图片

Anchor:

预先设定的一系列可能存在目标的框,需要设定:
①anchor的大小(面积)与高宽比;
anchor的大小与宽高比
②anchor的数量与位置,与特征层的特征点相对应。

RPN:

候选区域生成网络,实现过程:
①输入特征层,输出2k scores和4k coordinates,分别对应anchor的类别(前景/背景)置信度和回归参数,其中k代表anchors的种类数(实际实现可以只生成k scores代表前景置信度);
②根据coordinates对全部anchors的位置和大小进行调整,得到初步的proposals;
③对得到的proposals进行条件筛选:
a.将proposals的范围限制在原图边界;
b.删除尺寸过小的proposals(尺寸阈值需要人为设定);
c.按照scores对proposals进行降序排列,取前n个保留,剩余删除(n需要人为设定,且在训练过程和验证过程中不同)(一般情况下,此前的proposals数量≥n,如不足n则全部保留);
d.对剩余proposals进行nms并按scores进行降序排列,取前m个保留,剩余删除(m需要人为设定,且在训练过程和验证过程中不同)(一般情况下,此前的proposals数量≥m,如不足则重复采样)。
注:为方便代码实现,以上筛选方法与原文描述有一些差异,但最终效果相差不大。
FasterRCNN模型结构——pytorch实现_第2张图片

import torch
import torch.nn as nn
from torchvision.models import vgg16
from torchvision.ops import nms, RoIPool

from einops import rearrange


class AnchorGenerator(nn.Module):  # Anchor相关方法
    def __init__(
            self,
            anchor_scales=(128, 256, 512),  # anchor的面积(开根号)
            anchor_ratios=(0.5, 1., 2.)  # anchor的高宽比(H:W)
    ):
        super(AnchorGenerator, self).__init__()
        self.anchor_scales = torch.as_tensor(anchor_scales).unsqueeze(0)
        self.anchor_ratios = torch.as_tensor(anchor_ratios).unsqueeze(1)
        self.anchor_base = self.generate_anchor_base()  # 生成基础anchor

    def generate_anchor_base(self):
        '''
        生成基础anchor方法
        :return: anchor_base: tensor(k,4)
        其中,k是anchor尺寸类别数量,对应3x3共9种anchor;4代表以anchor中心点为原点的位置(尺寸)坐标(xmin,ymin,xmax,ymax)
        '''
        h_ratios = torch.sqrt(self.anchor_ratios)
        w_ratios = 1. / h_ratios
        h = (self.anchor_scales * h_ratios).view(-1, 1)
        w = (self.anchor_scales * w_ratios).view(-1, 1)
        return torch.cat((-w / 2, -h / 2, w / 2, h / 2), dim=1)

    def generate_all_anchors(self, step, feature_size):
        '''
        生成全部anchor方法
        :param step: 步距,原图高(宽)/特征层高(宽),即特征层上的一像素在原图上代表的像素长度
        :param feature_size: 特征层尺寸(H,W)
        :return: anchors: (N,4),将特征层上的所有像素点(特征点),对应在原图上生成的anchors,N = HxWxk
        '''
        feature_h, feature_w = feature_size
        x, y = torch.meshgrid(torch.arange(0, step * feature_w, step), torch.arange(0, step * feature_h, step))
        x = torch.flatten(x)
        y = torch.flatten(y)
        shift = torch.stack((x, y, x, y), dim=1)
        anchors = (shift.unsqueeze(0) + self.anchor_base.unsqueeze(1)).view(-1, 4)
        return anchors


class ProposalGenerator(nn.Module):  # Proposal相关方法
    def __init__(
            self,
            train=True,  # 是否为训练状态
            nms_iou_th=0.7,  # nms的iou阈值
            n_train_pre_nms=10000,  # 训练时,在nms之前保留的proposals数量
            n_train_post_nms=2000,  # 训练时,在nms之后保留的proposals数量
            n_test_pre_nms=5000,  # 验证时,在nms之前保留的proposals数量
            n_test_post_nms=1000,  # 验证时,在nms之后保留的proposals数量
            min_size=20  # proposals的最小尺寸(H/W)
    ):
        super(ProposalGenerator, self).__init__()

        self.train = train
        self.nms_iou_th = nms_iou_th
        if self.train:
            self.n_pre_nms = n_train_pre_nms
            self.n_post_nms = n_train_post_nms
        else:
            self.n_pre_nms = n_test_pre_nms
            self.n_post_nms = n_test_post_nms
        self.min_size = min_size

    def anchors2proposals(self, anchors, reg_coordinates):
        '''
        根据reg参数,将anchors转换为proposals方法
        :param anchors: 全部anchors
        :param reg_coordinates:RPN的输出reg_coordinates参数(dx,dy,dw,dh),用于将anchors调整为proposals
        :return: proposals: (B,N,4)
        其中,B代表batch size,N代表proposals个数(即anchors个数),4代表位置坐标(xmin,ymin,xmax,ymax)
        '''
        batch_size = reg_coordinates.shape[0]
        anchors = torch.repeat_interleave(anchors.unsqueeze(0), batch_size, dim=0)
        xmin, ymin, xmax, ymax = map(lambda t: anchors[:, :, t::4], [0, 1, 2, 3])
        x = (xmin + xmax) / 2
        y = (ymin + ymax) / 2
        w = xmax - xmin
        h = ymax - ymin
        dx, dy, dw, dh = map(lambda t: reg_coordinates[:, :, t::4], [0, 1, 2, 3])

        reg_x = x + dx * x  # x' = x + x * dx
        reg_y = y + dy * y  # y' = y + y * dx
        reg_w = torch.exp(dw) * w  # w' = w * exp(dw)
        reg_h = torch.exp(dh) * h  # h' = h * exp(dh)

        proposals = torch.cat((reg_x - reg_w / 2, reg_y - reg_h / 2, reg_x + reg_w / 2, reg_y + reg_h / 2), dim=-1)
        return proposals

    def generate_proposals(self, anchors, cls_scores, reg_coordinates, image_size):
        '''
        生成RPN最终输出的proposals(rois)
        :param anchors: 全部anchors
        :param cls_scores: RPN的输出cls_scores,代表每个anchor为前景(目标)的置信度
        :param reg_coordinates:RPN的输出reg_coordinates,代表每个anchor的中心坐标和宽高调整参数
        :param image_size:输入图像(原图)尺寸
        :return:rois (B, n_post_nms, 4)
        '''
        proposals = self.anchors2proposals(anchors, reg_coordinates)  # 根据reg_coordinates将anchors调整为proposals
        proposals[:, :, [0, 2]] = torch.clamp(proposals[:, :, [0, 2]],
                                              min=0, max=image_size[1])  # 限制proposals宽度方向超过原图边界
        proposals[:, :, [1, 3]] = torch.clamp(proposals[:, :, [1, 3]],
                                              min=0, max=image_size[0])  # 限制proposals高度方向超过原图边界
        batch_size = proposals.shape[0]
        roi_list = []
        for i in range(batch_size):  # 对batch进行循环
            roi = proposals[i]  # batch中每张图像的roi(proposals)
            cls_score = cls_scores[i]  # batch中每张图像的cls_scores

            # 删除宽/高小于min_size的roi
            keep = torch.where(((roi[:, 2] - roi[:, 0]) >= self.min_size) & ((roi[:, 3] - roi[:, 1]) >= self.min_size))[
                0]
            roi = roi[keep, :]
            cls_score = cls_score[keep]

            # 根据置信度进行排序,选择前n_pre_nms个roi
            # 一般情况下,此时roi的数量≥n_pre_nms,如不足则全部保留
            keep = torch.argsort(cls_score, descending=True)[:self.n_pre_nms]
            roi = roi[keep, :]
            cls_score = cls_score[keep]

            # 对剩下的roi进行nms处理,再选择前n_post_nms个roi
            # 一般情况下,此时roi的数量≥n_post_nms,如不足则重复采样
            keep = nms(roi, cls_score, self.nms_iou_th)
            if len(keep) < self.n_post_nms:
                rand_index = torch.randint(0, len(keep), size=(self.n_post_nms - len(keep),))
                keep = torch.cat([keep, keep[rand_index]], dim=0)
            keep = keep[:self.n_post_nms]
            roi = roi[keep, :]

            roi_list.append(roi)
        rois = torch.stack(roi_list, dim=0)
        return rois


class RegionProposalNetwork(nn.Module):  # RPN
    def __init__(self, channels, step, image_size,cuda=True):
        super(RegionProposalNetwork, self).__init__()

        self.step = step  # 步距,原图高(宽)/特征层高(宽),即特征层上的一像素在原图上代表的像素长度
        self.image_size = image_size  # 输入图像(原图)尺寸

        self.anchorgenerator = AnchorGenerator()  # 实例化AnchorGenerator
        self.proposalgenerator = ProposalGenerator()  # 实例化ProposalGenerator
        self.anchor_base = self.anchorgenerator.anchor_base
        k = self.anchor_base.shape[0]

        self.conv = nn.Conv2d(channels, channels, 3, 1, 1)  # RPN的特征整合
        self.conv_cls = nn.Conv2d(channels, k, 1, 1, 0)  # RPN的cls层,生成k scores **原论文此处生成2k并进行softmax**
        self.conv_reg = nn.Conv2d(channels, k * 4, 1, 1, 0)  # RPN的reg层,生成4k coordinates
        self.relu = nn.ReLU(inplace=True)
        self.sigmoid = nn.Sigmoid()

    def forward(self, features):
        '''
        前向传播
        :param features: 图像经过backbone提取到的feature map(特征层)
        :return: 
            cls_scores: 全部anchors的前景置信度,此处返回用于RPN的loss计算
            reg_coordinates: 全部anchors的中心点和宽高回归参数,此处返回用于RPN的loss计算
            anchors:  全部anchors
            rois:  最终输出的roi,与features一起输入head网络
        '''
        x = self.relu(self.conv(features))  # (N,C,H,W) -> (N,C,H,W)
        cls_scores = self.sigmoid(self.conv_cls(x))  # (N,C,H,W) -> (N,k,H,W)
        cls_scores = rearrange(cls_scores, "N K H W -> N (K H W)")
        reg_coordinates = self.conv_reg(x)  # (N,C,H,W) -> (N,4k,H,W)
        reg_coordinates = rearrange(reg_coordinates, "N (a K) H W -> N (K H W) a", a=4)
        anchors = self.anchorgenerator.generate_all_anchors(self.step, features.shape[2:])
        if self.cuda:
            anchors = anchors.cuda()
        rois = self.proposalgenerator.generate_proposals(anchors, cls_scores, reg_coordinates, self.image_size)

        return cls_scores, reg_coordinates, anchors, rois


class Head(nn.Module):  # Head
    def __init__(
            self,
            num_classes,  # 检测类别数,包含背景(实际检测类别数+1)
            channels,  # 特征层通道数
            step,  # 步距,原图高(宽)/特征层高(宽),即特征层上的一像素在原图上代表的像素长度
            roi_size=7  # roi pooling的输出尺寸
    ):
        super(Head, self).__init__()
        self.num_classes = num_classes
        self.step = step
        self.classifier = nn.Sequential(
            nn.Linear(channels * roi_size ** 2, 1024),
            nn.ReLU(inplace=True),
            nn.Linear(1024, 1024),
            nn.ReLU(inplace=True)
        )
        self.cls = nn.Linear(1024, self.num_classes)
        self.reg = nn.Linear(1024, self.num_classes * 4)
        self.roipool = RoIPool((roi_size, roi_size), 1)  # roi pooling

    def forward(self, feature, rois):
        '''
        前向传播
        :param feature: 图像经过backbone提取到的feature map(特征层)
        :param roi_list: 特征层经过rpn得到的roi列表(候选框)
        :return:
            scores: 类别置信度,(B, n_post_nms, num_classes)
            regs: 边界框回归参数,(B, n_post_nms, num_classes x 4)
        '''
        batch_size = feature.shape[0]
        feature_rois = rois / self.step  # 将原图上的roi转换为特征层上的roi(尺寸变换)
        feature_rois_list = [feature_rois[i, :, :] for i in range(batch_size)]

        rois = self.roipool(feature, feature_rois_list)  # (N,C,7,7) N代表roi的总个数,N = batch size x n_post_nms
        rois = rearrange(rois, "N C H W -> N (C H W)")
        out = self.classifier(rois)
        scores = self.cls(out).view(batch_size, -1, self.num_classes)
        regs = self.reg(out).view(batch_size, -1, self.num_classes * 4)
        return scores, regs


class FasterRCNN(nn.Module):  # FasterRCNN
    def __init__(self, backbone, rpn, head):
        super(FasterRCNN, self).__init__()
        self.backbone = backbone
        self.rpn = rpn
        self.head = head

    def forward(self, x):
        '''
        前向传播
        :param x:输入图像(训练/验证/测试图像)
        :return:
            rpn_scores: rpn输出的每个anchor前景置信度
            rpn_regs: rpn输出的每个anchr回归参数
            anchors: rpn输出的全部anchors
            rois: rpn输出的rois
            head_scores: head输出的每个roi类别置信度
            head_regs: head输出的每个roi回归参数
        '''
        feature = self.backbone(x)
        rpn_scores, rpn_regs, anchors, rois = self.rpn(feature)
        head_scores, head_regs = self.head(feature, rois)

        return rpn_scores, rpn_regs, anchors, rois, head_scores, head_regs


if __name__ == "__main__":
    cuda = True
    backbone = vgg16().features  # 选用vgg16的features部分作为FasterRCNN的backbone
    batch_size = 8
    feature_channels = 512  # vgg16输出的特征层通道数
    step = 32  # vgg16输出的特征层与输入图像的步距关系
    num_classes = 20  # 目标类别数量(不包括背景)
    image_size = (800, 1300)  # 输入图像尺寸
    rpn = RegionProposalNetwork(feature_channels, step, image_size, cuda=cuda)  # 构建rpn
    head = Head(num_classes + 1, feature_channels, step)  # 构建head
    fasterrcnn = FasterRCNN(backbone, rpn, head)  # 构建FasterRCNN

    data = torch.randn(batch_size, 3, 800, 1300)  # 模拟网络输入
    if cuda:
        data = data.cuda()
        fasterrcnn.cuda()
    rpn_scores, rpn_regs, anchors, rois, head_scores, head_regs = fasterrcnn(data)
    # torch.Size([8, 9000])
    # torch.Size([8, 9000, 4])
    # torch.Size([9000, 4])
    # torch.Size([8, 2000, 4])
    # torch.Size([8, 2000, 21])
    # torch.Size([8, 2000, 84])
    [print(i.shape) for i in [rpn_scores, rpn_regs, anchors, rois, head_scores, head_regs]]

你可能感兴趣的:(pytorch,深度学习,计算机视觉)