- 直播预告丨精度优于AlphaFold,基于深度学习实现生物大分子及其互作的三维结构预测
「MeetAI4S」系列直播第6期将于1月15日19:00准时开播,HyperAI超神经有幸邀请到了南开大学统计与数据科学学院教授郑伟,他本次分享的主题是「AlphaFold3王座未稳,来自学术界的反超:基于深度学习的生物大分子及其互作的三维结构预测」。蛋白质的功能取决于其独特的三维结构,近年来,基于深度学习等人工智能技术的蛋白质结构预测发展迅猛,AlphaFold甚至获得了2024年诺贝尔化学奖
- 线性回归:从基础到进阶的全面解析
tester Jeffky
大模型线性回归机器学习算法
线性回归:从基础到进阶的全面解析线性回归是机器学习中最基本的算法之一,广泛应用于预测和分析。本文将详细介绍线性回归的基本概念、数学原理、实现方法以及在实际应用中的注意事项。我们将通过丰富的代码示例来展示如何从头开始构建一个简单的线性回归模型,并逐步深入到更复杂的场景。1.线性回归的基本概念1.1什么是线性回归?线性回归是一种用于建模两个或多个变量之间关系的统计方法。它假设因变量(目标变量)与一个或
- Linux top命令cpu使用率计算底层原理
学会了没
linux运维服务器监控cpu使用率
在Linux中,top命令通过读取内核提供的统计数据来计算CPU使用率。其底层原理可以概括为以下几步:1.读取/proc/stattop命令主要从/proc/stat文件中获取CPU的统计信息。这个文件包含了每个CPU核心(或所有核心合计)的各种状态下的时间计数,单位是jiffies(一个jiffy是内核时间单位,通常是1/100秒或1/1000秒,取决于Hertz配置)。/proc/stat中包
- 数学:机器学习的理论基石
每天五分钟玩转人工智能
机器学习人工智能
一、数学:机器学习的理论基石机器学习是一种通过数据学习模式和规律的科学。其核心目标是从数据中提取有用的信息,以便对未知数据进行预测和分类。为了实现这一目标,机器学习需要一种数学框架来描述和解决问题。数学在机器学习中起着至关重要的作用,它提供了一种数学模型来描述数据和模式,以及一种数学方法来优化模型。数学在机器学习中的应用非常广泛,涵盖了线性代数、概率论、统计学、微积分、优化等多个领域。这些数学方法
- linux中启动rpc.rstat监控
在Linux中启动rpc.rstatd监控服务的步骤详解rpc.rstatd服务是一个用于收集远程主机性能统计信息的服务,常见于UNIX类系统中,通常与rpcbind一起工作,提供系统的CPU、内存、磁盘等资源的实时监控数据。在Linux系统中,启用并配置rpc.rstatd服务可以帮助管理员实时获取系统的性能信息,便于后续的监控和分析。接下来,将详细介绍如何在Linux中启动并配置rpc.rst
- leetcode 6058. 统计打字方案数java
奔跑的废柴
LeetCodeleetcodejava动态规划
https://leetcode-cn.com/problems/count-number-of-texts/classSolution{//int[]buttons={0,0,3,3,3,3,3,4,3,4};longres=1;intmod=1000000007;long[][]dp;//dp[0]是3字符可能性的,dp[1]是4字符可能性的。dp[][i]表面长度为i的重复字符串的信息种类数
- LeetCode 383. 赎金信
不玩return的马可乐
算法/题库leetcode算法职场和发展蓝桥杯数据结构
在本篇博客中,我们将探讨LeetCode上的一个经典问题:383.赎金信。这个问题考察了我们对字符串处理和字符计数的理解和应用。问题描述解题思路这个问题可以通过字符计数的方法来解决。我们首先统计magazine中每个字符出现的次数,然后检查ransomNote中的每个字符是否都能在magazine中找到足够的数量。如果ransomNote中的任何一个字符在magazine中的数量不足,我们就返回f
- 每日一题45:统计移除递增子数组的数目
锂享生活
每日一题算法数据结构
一、每日一题给你一个下标从0开始的正整数数组nums。如果nums的一个子数组满足:移除这个子数组后剩余元素严格递增,那么我们称这个子数组为移除递增子数组。比方说,[5,3,4,6,7]中的[3,4]是一个移除递增子数组,因为移除该子数组后,[5,3,4,6,7]变为[5,6,7],是严格递增的。请你返回nums中移除递增子数组的总数目。注意,剩余元素为空的数组也视为是递增的。子数组指的是一个数组
- 十.java入门【案例】
JuGeGer
java入门java
day10【练习】减肥计划案例逢七必过案例统计成绩数组求和数组中的元素查找案例数组中的元素反转评委打分案例快捷键:自动分配变量newXxx(...).var或者newXxx(...)alt+回车方法调用(...).var或者方法调用(...)alt+回车生成输出语句表达式.sout方法调用(...).sout第一章基础练习1.1减肥计划if版本需求输入星期数[1,7],显示今天的减肥活动周一:跑步
- 华为OD机试E卷 --热点网站统计--24年OD统一考试(Java & JS & Python & C & C++)
飞码创造者
最新华为OD机试题库2024华为odjavajavascriptpythonc++c语言
文章目录题目描述输入描述输出描述用例题目解析JS算法源码Java算法源码python算法源码c算法源码c++算法源码题目描述企业路由器的统计页面,有一个功能需要动态统计公司访问最多的网页URLtopN。请设计一个算法,可以高效动态统计TopN的页面。输入描述每一行都是一个URL或一个数字•如果是URL,代表一段时间内的网页访问•如果是一个数字N,代表本次需要输出的TopN个URL输入约束:总访问网
- 华为OD机试2024年E卷-喊7的次数重排[100分]( Java | Python3 | C++ | C语言 | JsNode | Go)实现100%通过率
梅花C
华为OD题库华为od
题目描述喊7是一个传统的聚会游戏,N个人围成一圈,按顺时针从1到N编号。编号为1的人从1开始喊数,下一个人喊的数字为上一个人的数字加1,但是当将要喊出来的数字是7的倍数或者数字本身含有7的话,不能把这个数字直接喊出来,而是要喊"过"。假定玩这个游戏的N个人都没有失误地在正确的时机喊了"过",当喊到数字K时,可以统计每个人喊"过"的次数。现给定一个长度为N的数组,存储了打乱顺序的每个人喊"过"的次数
- 美食推荐系统 协同过滤余弦函数推荐美食 Springboot Vue Element-UI前后端分离
小盼江
源码课题设计毕业设计美食springbootvue.js
个性化美食推荐系统协同过滤余弦函数推荐美食Echart数据统计SpringbootVueElement-UI前后端分离【亮点功能】1.Springboot+Vue+Element-UI+Mysql前后端分离2.Echarts图表统计数据,直观展示数据情况3.发表评论后,用户可以回复评论,回复的评论可以被再次回复,一级评论可以添加图片附件4.推荐美食列表展示,使用协同过滤余弦函数根据用户的评论,收藏
- 基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算实践过程
xiao5kou4chang6kai4
统计生态农业r语言回归贝叶斯统计学线性回归
专题一贝叶斯统计学的思想与概念1.1信念函数与概率1.2事件划分与贝叶斯法则1.3稀少事件的概率估计1.4可交换性1.5预测模型的构建专题二单参数模型2.1二项式模型与置信域2.2泊松模型与后验分布2.3指数族模型与共轭先验专题三蒙特卡罗逼近3.1蒙特卡罗方法3.2任意函数的后验推断3.3预测分布采样3.4后验模型检验专题四正态模型4.1均值与条件方差的推断4.2基于数学期望的先验4.3非正态分布
- python统计列表中元素个数_python中计算一个列表中连续相同的元素个数方法
weixin_39611008
python统计列表中元素个数
python中计算一个列表中连续相同的元素个数方法最简单的例子:a=[1,1,1,1,2,2,2,3,3,1,1,1,3]#问:计算a中最多有几个连续的1很明显,答案是4如果用代码实现,最先想到的就是itertools:importitertoolsa=[1,1,1,1,2,2,2,3,3,1,1,1,3]printmax([len(list(v))fork,vinitertools.groupb
- 广义加性模型的参数、半参数、非参数形式
智识小站
可解释机器学习算法
简要介绍在统计学中,广义加性模型(GAM)是一种广义线性模型,其中线性响应变量线性地依赖于一些预测变量的未知光滑函数,并且人们对这些光滑函数的推理很感兴趣。GAM最初由TrevorHastie和RobertTibshirani[1]开发,用于将广义线性模型的性质与加性模型相结合。它们可以被解释为朴素贝叶斯生成模型的判别推广。该模型将一个单变量响应变量Y和一些预测变量联系起来。为Y指定指数族分布,例
- 【数据分析(二)】初探 Pandas
dandellion_
Python语法数据分析pandas数据挖掘
目录引言1.基本数据结构1.1.Series的初始化和简单操作1.2.DataFrame的初始化和简单操作1.2.1.初始化与持久化1.2.2.读取查看1.2.3.行操作1.2.4.列操作1.2.5.选中筛查2.数据预处理2.0.生成样例表2.1.缺失值处理2.2.类型转换和排序2.3.统计分析3.数据透视3.0.生成样例表3.1.生成透视表4.数据重塑4.1.层次化索引4.1.1.双层索引的Se
- python 单因子方差分析_假设检验之F检验-方差分析
雏Carnation
python单因子方差分析
这一次我们来了解一下假设检验中另一个重要检验-F检验什么是F检验?F检验(F-test),最常用的别名叫做联合假设检验(英语:jointhypothesestest),此外也称方差比率检验、方差齐性检验,方差分析,它是一种在(H0)之下,统计值服从的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计总体F检验对于数据的正态性非常敏感,因此在检验方差齐
- 火星数据电竞数据,世界杯数据接口api,足球数据资料库
Tina0898
数据分析
电竞数据包含的内容有很多,比如说基础数据(实时比分,关键事件,赛后数据等等),统计数据(阵容分析,选手分析,地图分析等),还有资料库数据(赛事战队,赛程赛果,赛况榜单等等),众多的数据组合而成形成如今的电竞大数据。在当今电竞世界中,电子竞技的大数据可以用在多个方面,从自身来说:可以用来分析自己的强势点,可以分析对手的弱点,从而运用更好的策略来战胜对手。通过电竞大数据也可以更好地了解游戏,了解当下游
- linux文本管理!!!
听风Q
linuxlinux运维服务器
文章目录第1章文本过滤/查看命令1.echo:输出文本2.cat:合并文件或查看文件内容3.head:显示文件头部信息4.tail:显示文件尾部信息5.wc:统计文本行号6.less:分页显示文件内容7.grep:文本过滤工具8.定向符号第2章上古神器-VIM编辑器1.VIM介绍2.VIM特点3.VIM工作模式普通模式编辑模式命令行模式4.VIM生存指南普通模式:移动普通模式:复制粘贴普通模式:撤
- 2266. 统计打字方案数
咔咔咔的
leetcodec++
2266.统计打字方案数题目链接:2266.统计打字方案数代码如下:classSolution{public:intcountTexts(stringpressedKeys){vectorf(pressedKeys.size()+1);f[0]=f[1]=1;for(inti=1;i=2&&pressedKeys[i]==pressedKeys[i-2]){f[i+1]+=f[i-2];}if(i
- 【2024华为OD-E卷-100分-免单统计】(题目+思路+Java&C++&Python解析)
执着的小火车
2024华为OD-E卷华为odjavac++算法数据结构华为
题目描述2024华为OD-E卷-100分-免单统计某餐厅推出了一项优惠活动:每位顾客在餐厅消费满200元,即可获得一次免单抽奖机会。抽奖的规则是从一个装有红球和白球的箱子中随机抽取一个球,如果抽到红球则免单,抽到白球则不免单。已知箱子里红球和白球的比例是1:N(N表示白球数量是红球数量的N倍)。现在给你餐厅某天的顾客消费记录以及红球与白球的比例N,请你统计出该天免单的人数。输入输入的第一行为两个整
- 一文帮你搞懂flink中窗口的分类(一)
知否&知否
flink中窗口及其函数分类flink大数据
Window可以分成两类:CountWindow:按照指定的数据条数生成一个Window,与时间无关。滚动计数窗口,每隔N条数据,统计前N条数据滑动计数窗口,每隔N条数据,统计前M条数据TimeWindow:按照时间生成Window。(重点)滚动时间窗口,每隔N时间,统计前N时间范围内的数据,窗口长度N,滑动距离N滑动时间窗口,每隔N时间,统计前M时间范围内的数据,窗口长度M,滑动距离N还有一种特
- 基于python的时空地理加权回归(GTWR)模型
有梦想的Frank博士
数据处理数据分析回归空间分析时空异质性
一、时空地理加权回归(GTWR)模型时空地理加权回归(GTWR)模型是由美国科罗拉多州立大学的AndyLiaw、StanleyA.Fiel和MichaelE.Bock于2008年提出的一种高级空间统计分析方法。它是在传统地理加权回归(GWR)模型的基础上发展起来的,通过结合时间和空间两个维度,提供了一种更为灵活和精确的时空数据分析手段。背景和发展传统的地理加权回归(GWR)模型主要关注地理空间上的
- 北大数学校友胡懿娟归国任教!重回母校,专注于统计学、微生物学和遗传学的交叉领域
量子位
关注前沿科技量子位又一科学家从美归国——北大数学系校友胡懿娟。援引人民日报消息,在北京大学北京国际数学研究中心发布的2024年工作回顾中显示,她于去年7月入职北大。回来之后,她将继续专注于统计学、微生物学和遗传学的交叉领域,致力于解决实际的生物医学数据分析问题。△北大官网截图网友纷纷为她点赞:能力与颜值并存!同时也感叹,越来越多的科学家选择回到祖国,为科学技术发展和人才培养添砖加瓦。北大数学校友胡
- Python 爬虫入门教程:从零构建你的第一个网络爬虫
m0_66323401
python爬虫开发语言
网络爬虫是一种自动化程序,用于从网站抓取数据。Python凭借其丰富的库和简单的语法,是构建网络爬虫的理想语言。本文将带你从零开始学习Python爬虫的基本知识,并实现一个简单的爬虫项目。1.什么是网络爬虫?网络爬虫(WebCrawler)是一种通过网络协议(如HTTP/HTTPS)获取网页内容,并提取其中有用信息的程序。常见的爬虫用途包括:收集商品价格和评价。抓取新闻或博客内容。统计数据分析。爬
- 毕业设计--基于Python+Django框架的豆瓣图书评论推荐可视化系统
源码空间站11
python课程设计django毕业设计人工智能后端豆瓣图书爬虫
1.系统概述本系统是一个基于Python和Django框架的豆瓣图书评论推荐可视化系统。通过收集并分析豆瓣图书的评论数据,结合可视化技术,系统能够为用户推荐感兴趣的图书,并以直观的方式展示图书评论的统计信息和分析结果。2.项目目标本项目的主要目标是设计并实现一个豆瓣图书评论推荐系统,具体目标如下:图书评论数据采集与存储:系统能够从豆瓣平台抓取图书评论数据,并将其存储在本地数据库中(db.sqlit
- numpy和panda在数据统计时的注意事项
积跬步,慕至千里
软件安装及程序错误解决方案集数据分析所遇问题解答库numpy
numpy和panda在数据统计时的注意事项:NumPy中只要有数据缺失就会返回NaN而在Pandas中则会跳过该值对剩余的数值进行相应计算示例importpandasaspdimportnumpyasnpa=np.array([np.nan,1,3,5])b=pd.Series(a)print('变量a:',a,"\n变量b:\n",b)a.sum(),b.sum()输出结果:
- QML音视频实时通信
QT性能优化QT原理源码QT界面美化
qtqt6.3qt5QT教程c++音视频
QML音视频实时通信使用AI技术辅助生成QT界面美化视频课程QT性能优化视频课程QT原理与源码分析视频课程QTQMLC++扩展开发视频课程免费QT视频课程您可以看免费1000+个QT技术视频免费QT视频课程QT统计图和QT数据可视化视频免费看免费QT视频课程QT性能优化视频免费看免费QT视频课程QT界面美化视频免费看1QML与音视频实时通信概述1.1QML音视频技术发展背景1.1.1QML音视频技
- QML Web云应用开发
QT性能优化QT原理源码QT界面美化
qtqt6.3qt5QT教程c++
QMLWeb云应用开发使用AI技术辅助生成QT界面美化视频课程QT性能优化视频课程QT原理与源码分析视频课程QTQMLC++扩展开发视频课程免费QT视频课程您可以看免费1000+个QT技术视频免费QT视频课程QT统计图和QT数据可视化视频免费看免费QT视频课程QT性能优化视频免费看免费QT视频课程QT界面美化视频免费看1QML与Web技术概述1.1QML与Web技术简介1.1.1QML与Web技术
- QT硬件接口设计
QT性能优化QT原理源码QT界面美化
qtqt6.3qt5QT教程c++
QT硬件接口设计使用AI技术辅助生成QT界面美化视频课程QT性能优化视频课程QT原理与源码分析视频课程QTQMLC++扩展开发视频课程免费QT视频课程您可以看免费1000+个QT技术视频免费QT视频课程QT统计图和QT数据可视化视频免费看免费QT视频课程QT性能优化视频免费看免费QT视频课程QT界面美化视频免费看1QT硬件接口设计概述1.1QT硬件接口设计简介1.1.1QT硬件接口设计简介QT硬件
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开