pytorch 笔记:torch.nn.init

这个模块中的所有函数都是用来初始化神经网络参数的,所以它们都在torch.no_grad()模式下运行,不会被autograd所考虑

1 计算gain value

1.1 介绍

这个在后面的一些nn.init初始化中会用到

pytorch 笔记:torch.nn.init_第1张图片

 1.2 用法

torch.nn.init.calculate_gain(nonlinearity, param=None)
import torch
torch.nn.init.calculate_gain('sigmoid')
#1

torch.nn.init.calculate_gain('tanh')
#1.6666666666666667

torch.nn.init.calculate_gain('leaky_relu',0.1)
#1.4071950894605838

torch.nn.init.calculate_gain('conv3d')
#1

2 初始化汇总

2.1 均匀分布

以均匀分布U(a,b)填充tensor

torch.nn.init.uniform_(tensor, a=0.0, b=1.0)
a=torch.Tensor(3,5)
a
'''
tensor([[9.8265e-39, 9.4592e-39, 1.0561e-38, 7.3470e-39, 1.0653e-38],
        [1.0194e-38, 1.0929e-38, 1.0102e-38, 1.0561e-38, 1.0561e-38],
        [1.0561e-38, 1.0745e-38, 1.0561e-38, 8.7245e-39, 9.6429e-39]])
'''

torch.nn.init.uniform_(a,3,5)
a
'''
tensor([[3.2886, 3.5971, 3.3080, 4.5271, 4.3113],
        [4.3634, 4.1311, 3.4466, 3.3745, 3.9957],
        [4.7776, 4.4654, 4.7397, 3.5465, 4.5716]])
'''

2.2 正态分布

N(mean,std^2)初始化tensor

torch.nn.init.normal_(tensor, mean=0.0, std=1.0)
a=torch.Tensor(3,5)
a
'''
tensor([[9.8265e-39, 9.4592e-39, 1.0561e-38, 7.3470e-39, 1.0653e-38],
        [1.0194e-38, 1.0929e-38, 1.0102e-38, 1.0561e-38, 1.0561e-38],
        [1.0561e-38, 1.0745e-38, 1.0561e-38, 8.7245e-39, 9.6429e-39]])
'''

torch.nn.init.normal_(a,0,5)
a
'''
tensor([[-9.6473, -0.8678, -7.0850, -1.3568, -6.1306],
        [-5.5031, -1.6662,  9.8144, -6.5255, -6.2179],
        [-0.6455, -1.7757,  7.7232, -1.2374, -1.2551]])
'''

2.3 定值

以定值初始化

torch.nn.init.constant_(tensor, val)
a=torch.Tensor(3,5)
a
'''
tensor([[9.8265e-39, 9.4592e-39, 1.0561e-38, 7.3470e-39, 1.0653e-38],
        [1.0194e-38, 1.0929e-38, 1.0102e-38, 1.0561e-38, 1.0561e-38],
        [1.0561e-38, 1.0745e-38, 1.0561e-38, 8.7245e-39, 9.6429e-39]])
'''

torch.nn.init.constant_(a,5)
a
'''
tensor([[5., 5., 5., 5., 5.],
        [5., 5., 5., 5., 5.],
        [5., 5., 5., 5., 5.]])
'''

 2.4 填充1

用定值1初始化

torch.nn.init.ones_(tensor)
a=torch.Tensor(3,5)
a
'''
tensor([[9.8265e-39, 9.4592e-39, 1.0561e-38, 7.3470e-39, 1.0653e-38],
        [1.0194e-38, 1.0929e-38, 1.0102e-38, 1.0561e-38, 1.0561e-38],
        [1.0561e-38, 1.0745e-38, 1.0561e-38, 8.7245e-39, 9.6429e-39]])
'''

torch.nn.init.ones_(a)
a
'''
tensor([[1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1.]])
'''

2.5 填充0

用定值0初始化

torch.nn.init.zeros_(tensor)
​
a=torch.Tensor(3,5)
a
'''
tensor([[9.8265e-39, 9.4592e-39, 1.0561e-38, 7.3470e-39, 1.0653e-38],
        [1.0194e-38, 1.0929e-38, 1.0102e-38, 1.0561e-38, 1.0561e-38],
        [1.0561e-38, 1.0745e-38, 1.0561e-38, 8.7245e-39, 9.6429e-39]])
'''

torch.nn.init.zeros_(a)
a
'''
tensor([[0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.]])
'''

​

2.6 使用单位矩阵进行初始化

torch.nn.init.eye_(tensor)
​
a=torch.Tensor(3,5)
a
'''
tensor([[9.8265e-39, 9.4592e-39, 1.0561e-38, 7.3470e-39, 1.0653e-38],
        [1.0194e-38, 1.0929e-38, 1.0102e-38, 1.0561e-38, 1.0561e-38],
        [1.0561e-38, 1.0745e-38, 1.0561e-38, 8.7245e-39, 9.6429e-39]])
'''

torch.nn.init.eye_(a)
a
'''
tensor([[1., 0., 0., 0., 0.],
        [0., 1., 0., 0., 0.],
        [0., 0., 1., 0., 0.]])
'''

​

2.7 Xavier 均匀初始化

torch.nn.init.xavier_uniform_(tensor, gain=1.0)

根据《Understanding the difficulty of training deep feedforward neural networks》,使用U(-a,a)进行初始化,其中

这里的gain就是 torch.nn.init.calculate_gain输出的内容

​
a=torch.Tensor(3,5)
a
'''
tensor([[9.8265e-39, 9.4592e-39, 1.0561e-38, 7.3470e-39, 1.0653e-38],
        [1.0194e-38, 1.0929e-38, 1.0102e-38, 1.0561e-38, 1.0561e-38],
        [1.0561e-38, 1.0745e-38, 1.0561e-38, 8.7245e-39, 9.6429e-39]])
'''

torch.nn.init.xavier_uniform_(a,
                              gain=torch.nn.init.calculate_gain('relu'))
a
'''
tensor([[-1.0399, -0.5018,  0.2838,  1.1071,  0.0897],
        [-0.9356,  0.9661, -0.6718, -1.0132,  0.9140],
        [ 0.9704,  0.8222,  0.2229, -1.1519,  0.4566]])
'''

2.8 Xavier 正态初始化

torch.nn.init.xavier_normal_(tensor, gain=1.0)

根据《Understanding the difficulty of training deep feedforward neural networks》,使用N(0,std^2)进行初始化,其中

这里的gain就是 torch.nn.init.calculate_gain输出的内容

​
a=torch.Tensor(3,5)
a
'''
tensor([[9.8265e-39, 9.4592e-39, 1.0561e-38, 7.3470e-39, 1.0653e-38],
        [1.0194e-38, 1.0929e-38, 1.0102e-38, 1.0561e-38, 1.0561e-38],
        [1.0561e-38, 1.0745e-38, 1.0561e-38, 8.7245e-39, 9.6429e-39]])
'''

torch.nn.init.xavier_uniform_(a,
                              gain=torch.nn.init.calculate_gain('relu'))
a
'''
tensor([[-1.0399, -0.5018,  0.2838,  1.1071,  0.0897],
        [-0.9356,  0.9661, -0.6718, -1.0132,  0.9140],
        [ 0.9704,  0.8222,  0.2229, -1.1519,  0.4566]])
'''

 2.9 Kaiming 均匀

根据《Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification》,使用U(-bound,bound)

其中

torch.nn.init.kaiming_uniform_(tensor, 
                        a=0, 
                        mode='fan_in',
                        nonlinearity='leaky_relu')

只有当nonlinearity为leaky_relu的时候,a有意义(表示负的那一部分的斜率)

a=torch.Tensor(3,5)
a
'''
tensor([[9.2755e-39, 8.9082e-39, 9.9184e-39, 8.4490e-39, 9.6429e-39],
        [1.0653e-38, 1.0469e-38, 4.2246e-39, 1.0378e-38, 9.6429e-39],
        [9.2755e-39, 9.7346e-39, 1.0745e-38, 1.0102e-38, 9.9184e-39]])
'''

torch.nn.init.kaiming_uniform_(a,
                              mode='fan_out',
                              nonlinearity='relu') 
a
'''
tensor([[ 0.7745, -1.0520, -0.3770,  0.7101,  0.9383],
        [ 1.0138,  0.6069, -0.5126, -0.3454,  1.2242],
        [ 0.3531,  0.2758,  0.3740, -0.8026,  1.1270]])
'''

2.10 kaiming正态 

根据《Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification》,使用N(0,std^2)进行初始化,其中

 

​
a=torch.Tensor(3,5)
a
'''
tensor([[9.8265e-39, 9.4592e-39, 1.0561e-38, 7.3470e-39, 1.0653e-38],
        [1.0194e-38, 1.0929e-38, 1.0102e-38, 1.0561e-38, 1.0561e-38],
        [1.0561e-38, 1.0745e-38, 1.0561e-38, 8.7245e-39, 9.6429e-39]])
'''

torch.nn.init.kaiming_normal_(a,
                              mode='fan_out',
                              nonlinearity='relu') 
a
'''
tensor([[ 1.1192, -0.6108, -1.2601,  0.4863,  0.4850],
        [ 0.8790, -0.1947,  0.3900, -0.1621,  0.0261],
        [-0.5602, -2.0269,  0.1730, -1.4321,  0.1675]])
'''

2.11 截断正态分布 

torch.nn.init.trunc_normal_(tensor, mean=0.0, std=1.0, a=- 2.0, b=2.0)

如果初始化的某一些元素不在[a,b]之间,那么就重新随机选取这个值 

​
a=torch.Tensor(3,5)
a
'''
tensor([[9.8265e-39, 9.4592e-39, 1.0561e-38, 7.3470e-39, 1.0653e-38],
        [1.0194e-38, 1.0929e-38, 1.0102e-38, 1.0561e-38, 1.0561e-38],
        [1.0561e-38, 1.0745e-38, 1.0561e-38, 8.7245e-39, 9.6429e-39]])
'''

torch.nn.init.trunc_normal_(a,
                           a=-0.2,
                           b=0.8) 
a
'''
tensor([[ 0.4685,  0.7272,  0.1331, -0.0746,  0.4909],
        [-0.1088,  0.4126,  0.4549,  0.0990,  0.3314],
        [ 0.4176,  0.0785,  0.3213,  0.5305,  0.5663]])
'''

2.12 初始化稀疏矩阵

torch.nn.init.sparse_(tensor, sparsity, std=0.01)

 sparsity表示每一列多少比例的元素是0

std表示每一列以N(0,std^2)的方式选择非负值

​
a=torch.Tensor(3,5)
a
'''
tensor([[9.8265e-39, 9.4592e-39, 1.0561e-38, 7.3470e-39, 1.0653e-38],
        [1.0194e-38, 1.0929e-38, 1.0102e-38, 1.0561e-38, 1.0561e-38],
        [1.0561e-38, 1.0745e-38, 1.0561e-38, 8.7245e-39, 9.6429e-39]])
'''

torch.nn.init.sparse_(a,sparsity=0.3)
a
'''
tensor([[ 0.0000,  0.0074, -0.0044, -0.0046,  0.0000],
        [-0.0091,  0.0000, -0.0111, -0.0024,  0.0047],
        [-0.0004,  0.0037,  0.0000,  0.0000,  0.0007]])
'''

3 fan_in 与 fan_out

下面是kaiming 初始化中对fan_mode的说法

  • "fan_in"可以保留前向计算中权重方差的大小。
    • Linear的输入维度
    • Conv2d:in\_channel*kernel\_width*kernel\_height
  • "fan_out"将保留后向传播的方差大小。 
    • Linear的输出维度
    • Conv2d:out\_channel*kernel\_width*kernel\_height

3.1 Pytorch的计算方式

Linear:

net=torch.nn.Linear(3,5)
net
#Linear(in_features=3, out_features=5, bias=True)

torch.nn.init._calculate_fan_in_and_fan_out(net.weight)
#(3,5)

torch.nn.init._calculate_correct_fan(net.weight,
                                    mode='fan_in')
#3

torch.nn.init._calculate_correct_fan(net.weight,
                                    mode='fan_out')
#5

Conv2d

net=torch.nn.Conv2d(kernel_size=(3,5),
                    in_channels=2,
                    out_channels=10)
net
#Conv2d(2, 10, kernel_size=(3, 5), stride=(1, 1))

torch.nn.init._calculate_fan_in_and_fan_out(net.weight)
#(30,150)



torch.nn.init._calculate_correct_fan(net.weight,
                                    mode='fan_in')
#30 (2*3*5)


torch.nn.init._calculate_correct_fan(net.weight,
                                    mode='fan_out')
#150 (10*3*5)

你可能感兴趣的:(pytorch学习,pytorch,深度学习,神经网络)