Given the root
of a binary tree, return the sum of every tree node's tilt.
The tilt of a tree node is the absolute difference between the sum of all left subtree node values and all right subtree node values. If a node does not have a left child, then the sum of the left subtree node values is treated as 0
. The rule is similar if the node does not have a right child.
Example 1:
Input: root = [1,2,3] Output: 1 Explanation: Tilt of node 2 : |0-0| = 0 (no children) Tilt of node 3 : |0-0| = 0 (no children) Tilt of node 1 : |2-3| = 1 (left subtree is just left child, so sum is 2; right subtree is just right child, so sum is 3) Sum of every tilt : 0 + 0 + 1 = 1
Example 2:
Input: root = [4,2,9,3,5,null,7] Output: 15 Explanation: Tilt of node 3 : |0-0| = 0 (no children) Tilt of node 5 : |0-0| = 0 (no children) Tilt of node 7 : |0-0| = 0 (no children) Tilt of node 2 : |3-5| = 2 (left subtree is just left child, so sum is 3; right subtree is just right child, so sum is 5) Tilt of node 9 : |0-7| = 7 (no left child, so sum is 0; right subtree is just right child, so sum is 7) Tilt of node 4 : |(3+5+2)-(9+7)| = |10-16| = 6 (left subtree values are 3, 5, and 2, which sums to 10; right subtree values are 9 and 7, which sums to 16) Sum of every tilt : 0 + 0 + 0 + 2 + 7 + 6 = 15
Example 3:
Input: root = [21,7,14,1,1,2,2,3,3] Output: 9
Constraints:
[0, 104]
.-1000 <= Node.val <= 1000
这道题是求一棵树中每个节点的左右子树所有节点之和的差值之和……大概就是要求每个节点的左子树的sum和右子树的sum,计算这俩的diff,然后计算所有节点的diff之和。
所以最直观的方法就是写一个recursive sum函数,计算以一个节点为root的这棵树的所有节点value之和。然后再写一个recursive求tilt的函数用来更新总值。代码如下:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int result = 0;
public int findTilt(TreeNode root) {
tilt(root);
return result;
}
private void tilt(TreeNode root) {
if (root == null) {
return;
}
int left = sum(root.left);
int right = sum(root.right);
int diff = Math.abs(left - right);
result += diff;
findTilt(root.left);
findTilt(root.right);
}
private int sum(TreeNode root) {
if (root == null) {
return 0;
}
return root.val + sum(root.left) + sum(root.right);
}
}
其实想想就觉得我这个方法递归了两次非常的效率低下,然后看了答案优化了一下。其实可以一边在求sum的时候一边就更新好了result,这其实就相当于post order traversal——先求左子树,再求右子树,再处理根节点。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int result = 0;
public int findTilt(TreeNode root) {
sum(root);
return result;
}
private int sum(TreeNode root) {
if (root == null) {
return 0;
}
int left = sum(root.left);
int right = sum(root.right);
int diff = Math.abs(left - right);
result += diff;
return root.val + left + right;
}
迭代就还是postorder + map处理,很常规,和543很像,感觉终于掌握了postorder迭代的精髓了。
class Solution {
public int findTilt(TreeNode root) {
if (root == null) {
return 0;
}
int result = 0;
Deque stack = new ArrayDeque<>();
Map map = new HashMap<>(); // node to sum
stack.push(root);
// map.put(root, 0); // seems this is optional
while (!stack.isEmpty()) {
TreeNode node = stack.peek();
if (node.left != null && !map.containsKey(node.left)) {
stack.push(node.left);
} else if (node.right != null && !map.containsKey(node.right)) {
stack.push(node.right);
} else {
node = stack.pop();
map.put(node, map.getOrDefault(node.left, 0) + map.getOrDefault(node.right, 0) + node.val);
int diff = 0;
if (node.left != null && node.right != null) {
diff = Math.abs(map.get(node.left) - map.get(node.right));
} else if (node.right != null) {
diff = Math.abs(map.get(node.right));
} else if (node.left != null) {
diff = Math.abs(map.get(node.left));
}
result += diff;
}
}
return result;
}
}