Q:数据挖掘的五大流程
1. 获取数据
2. 数据预处理
数据预处理的目的:让数据适应模型,匹配模型的需求
3.特征工程
特征工程是将原始数据转换为更能代表预测模型的潜在问题的特征的过程,可以通过挑选最相关的特征,提取特征以及创造特征来实现。其中创造特征又经常以降维算法的方式实现。
可能面对的问题有:特征之间有相关性,特征和标签无关,特征太多或太小,或者干脆就无法表现出应有的数据现象或无法展示数据的真实面貌
特征工程的目的:1) 降低计算成本,2) 提升模型上限
4. 建模,测试模型并预测出结果
5. 上线,验证模型效果
Q:涉及算法
模块preprocessing:几乎包含数据预处理的所有内容
模块Impute:填补缺失值专用
模块feature_selection:包含特征选择的各种方法的实践
模块decomposition:包含降维算法
Q:无量纲化?
将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布
的需求,这种需求统称为将数据“无量纲化”
数据的无量纲化可以是线性的,也可以是非线性的。线性的无量纲化包括中心化(Zero-centered或者Meansubtraction)处理和缩放处理(Scale)。中心化的本质是让所有记录减去一个固定值,即让数据样本数据平移到某个位置。缩放的本质是通过除以一个固定值,将数据固定在某个范围之中,取对数也算是一种缩放处理
Q:缩放处理(Scale)中的数据归一化
当数据(x)按照最小值中心化后,再按极差(最大值 - 最小值)缩放,数据移动了最小值个单位,并且会被收敛到[0,1]之间,而这个过程,就叫做数据归一化(Normalization,又称Min-Max Scaling)。注意,Normalization是归一化,不是正则化,真正的正则化是regularization,不是数据预处理的一种手段。归一化之后的数据服从正态分布:
Q:做数据标准化(Standardization)
preprocessing.StandardScaler
当数据(x)按均值(μ)中心化后,再按标准差(σ)缩放,数据就会服从为均值为0,方差为1的正态分布(即标准正态分布),而这个过程,就叫做数据标准化
自己处理的时候,不能是一维的
Q:impute.SimpleImputer
专门用来填补缺失值
data.info()
#填补年龄
Age = data.loc[:,"Age"].values.reshape(-1,1) #sklearn当中特征矩阵必须是二维
Age[:20]
from sklearn.impute import SimpleImputer
imp_mean = SimpleImputer() #实例化,默认均值填补
imp_median = SimpleImputer(strategy="median") #用中位数填补
imp_0 = SimpleImputer(strategy="constant",fill_value=0) #用0填补
imp_mean = imp_mean.fit_transform(Age) #fit_transform一步完成调取结果
imp_median = imp_median.fit_transform(Age)
imp_0 = imp_0.fit_transform(Age)
imp_mean[:20]
imp_median[:20]
imp_0[:20]
#在这里我们使用中位数填补Age
data.loc[:,"Age"] = imp_median
data.info()
#使用众数填补Embarked
Embarked = data.loc[:,"Embarked"].values.reshape(-1,1)
imp_mode = SimpleImputer(strategy = "most_frequent")
data.loc[:,"Embarked"] = imp_mode.fit_transform(Embarked)
data.info()
Q:BONUS:用Pandas和Numpy进行填补其实更加简单
import pandas as pd
data = pd.read_csv(r"C:\work\learnbetter\micro-class\week 3
Preprocessing\Narrativedata.csv",index_col=0)
data.head()
data.loc[:,"Age"] = data.loc[:,"Age"].fillna(data.loc[:,"Age"].median())
#.fillna 在DataFrame里面直接进行填补
data.dropna(axis=0,inplace=True)
#.dropna(axis=0)删除所有有缺失值的行,.dropna(axis=1)删除所有有缺失值的列
#参数inplace,为True表示在原数据集上进行修改,为False表示生成一个复制对象,不修改原数据,默认False
2.3处理分类型特征:编码与哑变量
实际中文字较多,要使用sklearn,得将文字转为数字
将标签转换为分类数值
preprocessing.LabelEncoder:标签专用,将标签转为分类数值
from sklearn.preprocessing import LabelEncoder
y = data.iloc[:,-1] #要输入的是标签,不是特征矩阵,所以允许一维
le = LabelEncoder() #实例化
le = le.fit(y) #导入数据
label = le.transform(y) #transform接口调取结果
le.classes_ #属性.classes_查看标签中究竟有多少类别
label #查看获取的结果label
le.fit_transform(y) #也可以直接fit_transform一步到位
le.inverse_transform(label) #使用inverse_transform可以逆转
data.iloc[:,-1] = label #让标签等于我们运行出来的结果
data.head()
#如果不需要教学展示的话我会这么写:
from sklearn.preprocessing import LabelEncoder
data.iloc[:,-1] = LabelEncoder().fit_transform(data.iloc[:,-1])
Q:preprocessing.OrdinalEncoder:特征专用,能够将分类特征转换为分类数值
Ordinal为序数的意思
from sklearn.preprocessing import OrdinalEncoder
OrdinalEncoderr 接口categories_之于LabelEncoder的接口classes_,一模一样的功能
区别:LabelEncoder是单一一维数组;OrdinalEcoder是二维数组
Q:preprocessing.OneHotEncoder:独热编码,创建哑变量
生活中有三种不同性质的分类数据
算法分类转换中忽略了数学的含义
data.head()
from sklearn.preprocessing import OneHotEncoder
X = data.iloc[:,1:-1]
enc = OneHotEncoder(categories='auto').fit(X)
result = enc.transform(X).toarray()
result
#依然可以直接一步到位,但为了给大家展示模型属性,所以还是写成了三步
OneHotEncoder(categories='auto').fit_transform(X).toarray()
#依然可以还原
pd.DataFrame(enc.inverse_transform(result))
enc.get_feature_names()
result
result.shape
#axis=1,表示跨行进行合并,也就是将量表左右相连,如果是axis=0,就是将量表上下相连
newdata = pd.concat([data,pd.DataFrame(result)],axis=1)
newdata.head()
newdata.drop(["Sex","Embarked"],axis=1,inplace=True)
newdata.columns =
["Age","Survived","Female","Male","Embarked_C","Embarked_Q","Embarked_S"]
newdata.head()
Q:常用统计变量
2.4处理连续型特征:二值化与分段
sklearn.preprocessing.Binarizer
sklearn.preprocessing.KBinsDiscretizer
#处理分段
from sklearn.preprocessing import KBinsDiscretizer
X = data.iloc[:,0].values.reshape(-1,1)
est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform')
est.fit_transform(X)
#查看转换后分的箱:变成了一列中的三箱
set(est.fit_transform(X).ravel())
est = KBinsDiscretizer(n_bins=3, encode='onehot', strategy='uniform')
#查看转换后分的箱:变成了哑变量
est.fit_transform(X).toarray()
3 特征选择 feature_selection
特征工程:让数据能够表现出最有效的特征,减少计算量
一定要和数据提供者开会
在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!
一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人,跟他们聊一段时间。技术能够让模型起飞,前提
是你和业务人员一样理解数据。所以特征选择的第一步,其实是根据我们的目标,用业务常识来选择特征。
Q:特征的选择方法
四种方法可以用来选择特征:过滤法,嵌入法,包装法,和降维算法
#导入数据,让我们使用digit recognizor数据来一展身手
import pandas as pd
data = pd.read_csv(r"C:\work\learnbetter\micro-class\week 3 Preprocessing\digit
recognizor.csv")
X = data.iloc[:,1:]
y = data.iloc[:,0]
X.shape
"""
这个数据量相对夸张,如果使用支持向量机和神经网络,很可能会直接跑不出来。使用KNN跑一次大概需要半个小时。
用这个数据举例,能更够体现特征工程的重要性。
"""
3.1 Filter过滤法
3.1.1 方差过滤
3.1.1.1 VarianceThreshold
这是通过特征本身的方差来筛选特征的类。比如一个特征本身的方差很小,就表示样本在这个特征上基本没有差异,可能特征中的大多数值都一样,甚至整个特征的取值都相同,那这个特征对于样本区分没有什么作用。所以无论接下来的特征工程要做什么,都要优先消除方差为0的特征。
VarianceThreshold有重要参数threshold,表示方差的阈值,表示舍弃所有方差小于threshold的特征,不填默认为0,即删除所有的记录都相同的特征。
from sklearn.feature_selection import VarianceThreshold
selector = VarianceThreshold() #实例化,不填参数默认方差为0
X_var0 = selector.fit_transform(X) #获取删除不合格特征之后的新特征矩阵
#也可以直接写成 X = VairanceThreshold().fit_transform(X)
X_var0.shape
依然剩下了708多个特征,明显还需要进一步的特征选择
然而,如果我们知道我们需要多少个特征,方差也可以帮助我们将特征选择一步到位。比如说,我们希望留下一半的特征,那可以设定一个让特征总数减半的方差阈值,只要找到特征方差的中位数,再将这个中位数作为参数threshold的值输入就好了
找中位数作为参数threshold的值
import numpy as np
X_fsvar = VarianceThreshold(np.median(X.var().values)).fit_transform(X)
X.var().values
np.median(X.var().values)
X_fsvar.shape
也可以排序后选取前多少名。
————其实也就是确定要多少特征后,才能用
当特征是二分类时,特征的取值就是伯努利随机变量
#若特征是伯努利随机变量,假设p=0.8,即二分类特征中某种分类占到80%以上的时候删除特征
X_bvar = VarianceThreshold(.8 * (1 - .8)).fit_transform(X)
X_bvar.shape
特征是伯努利时,才能使用
3.1.1.2 方差过滤对模型的影响
#python中的魔法命令,可以直接使用%%timeit来计算运行这个cell中的代码所需的时间
#为了计算所需的时间,需要将这个cell中的代码运行很多次(通常是7次)后求平均值,因此运行%%timeit的时间会远远超过cell中的代码单独运行的时间
随机森林快,是其计算原理决定的。特征是否过滤,过滤多少,影响并不大。但是对单棵树是有用的。
但KNN最近邻算法,涉及遍历和升级,算法不同
方差过滤,并不能保证模型更优,只能保证模型运行时间下降
Q:如何使用方差过滤,方差过滤的意义?
我们怎样知道,方差过滤掉的到底时噪音还是有效特征呢?过滤后模型到底会变好还是会变坏呢?答案是:每个数据集不一样,只能自己去尝试。这里的方差阈值,其实相当于是一个超参数,要选定最优的超参数,我们可以画学习曲线,找模型效果最好的点。但现实中,我们往往不会这样去做,因为这样会耗费大量的时间。我们只会使用阈值为0或者阈值很小的方差过滤,来为我们优先消除一些明显用不到的特征,然后我们会选择更优的特征选择方法
所以方差过滤,仅是预处理!使用阈值为0或者很小的方差,消除一些明显用不到的特征。
3.1.2 相关性过滤
方差挑选完毕之后,我们就要考虑下一个问题:相关性了。我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息。如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会给模型带来噪音。在sklearn当中,我们有三种常用的方法来评判特征与标签之间的相关性:卡方,F检验,互信息。
知道怎么用就好!
3.1.2.1 卡方过滤
卡方过滤是专门针对离散型标签(即分类问题)的相关性过滤。卡方检验类feature_selection.chi2计算每个非负特征和标签之间的卡方统计量,并依照卡方统计量由高到低为特征排名。再结合feature_selection.SelectKBest这个可以输入”评分标准“来选出前K个分数最高的特征的类,我们可以借此除去最可能独立于标签,与我们分类目的无关的特征。
卡方检验类feature_selection.chi2
即针对分类的问题(离散型标签)、非负的特征(预处理时归一化)
即方差过滤后模型的表现是提高的,就是过滤后的数据,没有提高,就用原数据。
卡方检验如果发现某特征中所有值都相同,则会提示要进行方差过滤。
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.model_selection import cross_val_score
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
#假设在这里我一直我需要300个特征
X_fschi = SelectKBest(chi2, k=300).fit_transform(X_fsvar, y)
X_fschi.shape
比较之前的模型表现:
卡方过滤后,效果是降低的
如果提高,说明过滤有效,滤掉了模型的噪音;如果降低,则调整K值或者放弃相关性过滤
#======【TIME WARNING: 5 mins】======#
%matplotlib inline
import matplotlib.pyplot as plt
score = []
for i in range(390,200,-10):
X_fschi = SelectKBest(chi2, k=i).fit_transform(X_fsvar, y)
once = cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=5).mean()
score.append(once)
plt.plot(range(390,200,-10),score)
plt.show()
曲线单调上升,意味着特征值的数量和模型的表现呈单调性。但同时,也意味着运行时间增加
Q:如何选择卡方检验中的K值
两组数据之间,如果不是相互独立的,反之就是相关的
重要的是,看p值。要p值小于等于0.05或者0.01,要特征之间找到不是自然的差异。
从特征工程的角度,我们希望选取卡方值很大,p值小于0.05的特征,即和标签是相关联的特征。而调用SelectKBest之前,我们可以直接从chi2实例化后的模型中获得各个特征所对应的卡方值和P值。
chivalue, pvalues_chi = chi2(X_fsvar,y)
chivalue
pvalues_chi
#k取多少?我们想要消除所有p值大于设定值,比如0.05或0.01的特征:
k = chivalue.shape[0] - (pvalues_chi > 0.05).sum()
#X_fschi = SelectKBest(chi2, k=填写具体的k).fit_transform(X_fsvar, y)
#cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=5).mean()
3.1.2.3 F检验
F检验,又称ANOVA,方差齐性检验,是用来捕捉每个特征与标签之间的线性关系的过滤方法。它即可以做回归也可以做分类,因此包含feature_selection.f_classif(F检验分类)和feature_selection.f_regression(F检验回归)两个类。其中F检验分类用于标签是离散型变量的数据,而F检验回归用于标签是连续型变量的数据。
即:F检验为方差齐性检验,观察每个特征与标签之间的线性关系
可作分类,也可以作回归。分别是F检验分类(离散)和F检验回归(连续)
和卡方检验一样,这两个类需要和类SelectKBest连用,并且我们也可以直接通过输出的统计量来判断我们到底要设置一个什么样的K。需要注意的是,F检验在数据服从正态分布时效果会非常稳定,因此如果使用F检验过滤,我们会先将数据转换成服从正态分布的方式。
F检验也是需要设置一个什么样的K值
使用F检验时,先将数据转换成正态分布的方式
F检验的本质是寻找两组数据之间的线性关系,其原假设是”数据不存在显著的线性关系“。它返回F值和p值两个统计量。
F检验本质是寻找两组数据之间的线性关系!
#进行F检验
from sklearn.feature_selection import f_classif
F, pvalues_f = f_classif(X_fsvar,y)
F
pvalues_f
k = F.shape[0] - (pvalues_f > 0.05).sum()
#X_fsF = SelectKBest(f_classif, k=填写具体的k).fit_transform(X_fsvar, y)
#cross_val_score(RFC(n_estimators=10,random_state=0),X_fsF,y,cv=5).mean()
得到的结论和我们用卡方过滤得到的结论一模一样:没有任何特征的p值大于0.01,所有的特征都是和标签相关的,因此我们不需要相关性过滤。
3.1.2.4 互信息法
如果说F检验只能够检验线性关系,互信息法则能够找出任意关系,包括线性与非线性关系。比F检验更强大
互信息法不返回p值 或F值类似的统计量
返回每个特征与目标之间的互信息量的估计,在0~1之间
from sklearn.feature_selection import mutual_info_classif as MIC
result = MIC(X_fsvar,y)
k = result.shape[0] - sum(result <= 0)
#X_fsmic = SelectKBest(MIC, k=填写具体的k).fit_transform(X_fsvar, y)
#cross_val_score(RFC(n_estimators=10,random_state=0),X_fsmic,y,cv=5).mean()
Q:过滤法总结
3.2 Embedded嵌入法
过滤法的进化版,能够得到各个特征的权重系数,进而寻找最有用的特征。
Q:嵌入法的缺点
超参数为模型权值
且由于每次都全部计算,时间会很长
feature_selection.SelectFromModel
class sklearn.feature_selection.SelectFromModel (estimator, threshold=None, prefit=False, norm_order=1,max_features=None)
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier as RFC
RFC_ = RFC(n_estimators =10,random_state=0)
X_embedded = SelectFromModel(RFC_,threshold=0.005).fit_transform(X,y)
#在这里我只想取出来有限的特征。0.005这个阈值对于有780个特征的数据来说,是非常高的阈值,因为平均每个特征
只能够分到大约0.001的feature_importances_
X_embedded.shape
#模型的维度明显被降低了
#同样的,我们也可以画学习曲线来找最佳阈值
#======【TIME WARNING:10 mins】======#
import numpy as np
import matplotlib.pyplot as plt
RFC_.fit(X,y).feature_importances_#这步是为了看一下,实例化后的特征权重系数如何
threshold = np.linspace(0,(RFC_.fit(X,y).feature_importances_).max(),20)#从开头到结尾,从小大到的中间的20个数。
#而range(0,(RFC_.fit(X,y).feature_importances_).max(),步长)步长不好判断,但是是差不多的作用。
score = []
for i in threshold:
X_embedded = SelectFromModel(RFC_,threshold=i).fit_transform(X,y)
once = cross_val_score(RFC_,X_embedded,y,cv=5).mean()
score.append(once)
plt.plot(threshold,score)
plt.show()
验证:
效果更好
继续缩小范围
#======【TIME WARNING:10 mins】======#
score2 = []
for i in np.linspace(0,0.00134,20):
X_embedded = SelectFromModel(RFC_,threshold=i).fit_transform(X,y)
once = cross_val_score(RFC_,X_embedded,y,cv=5).mean()
score2.append(once)
plt.figure(figsize=[20,5])
plt.plot(np.linspace(0,0.00134,20),score2)
plt.xticks(np.linspace(0,0.00134,20))
plt.show()
X_embedded = SelectFromModel(RFC_,threshold=0.000564).fit_transform(X,y)
X_embedded.
cross_val_score(RFC_,X_embedded,y,cv=5).mean()
#=====【TIME WARNING:2 min】=====#
#我们可能已经找到了现有模型下的最佳结果,如果我们调整一下随机森林的参数呢?
cross_val_score(RFC(n_estimators=100,random_state=0),X_embedded,y,cv=5).mean()
大型数据中,还是优先考虑过滤法
但随机森林中使用嵌入法,已经比KNN算法要快不少,并且可以很快实现优秀表现。
3.3 Wrapper包装法
在这个图中的“算法”,指的不是我们最终用来导入数据的分类或回归算法(即不是随机森林),而是专业的数据挖掘算法,即我们的目标函数。这些数据挖掘算法的核心功能就是选取最佳特征子集。
中间的算法,并不是指随机森林
画包装法的学习曲线:
#======【TIME WARNING: 15 mins】======#
#画包装法的学习曲线
score = []
for i in range(1,751,50):
X_wrapper = RFE(RFC_,n_features_to_select=i, step=50).fit_transform(X,y)
once = cross_val_score(RFC_,X_wrapper,y,cv=5).mean()
score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(1,751,50),score)
plt.xticks(range(1,751,50))
plt.show()
在包装法下面,应用50个特征时,模型的表现就已经达到了90%以上,比嵌入法和过滤法都高效很
多。
。如
果我们此时追求的是最大化降低模型的运行时间,我们甚至可以直接选择50作为特征的数目,这是一个在缩减了94%的特征的基础上,还能保证模型表现在90%以上的特征组合,不可谓不高效。
在特征数目相同时,包装法能够在效果上匹敌嵌入法。
总结:
找思路:过滤法
找全面提供模型表现:嵌入法
找效率:包装法