像素值为什么归一化?归一化作用?

答:

1、0-256数据较大且为整数,计算机进行计算时,容易造成精度丢失。如1/3 = 0;

2、在深度神经网络训练时一般使用较小的权重值来进行拟合,而当训练数据的值是较大整数值时,可能会减慢模型训练的过程。因此,一般需要图像的像素进行归一化,使得图像的每个像素值都在0-1之间。当图像的像素处于0-1范围时,由于任然介于0~255之间,所以图像依旧是有效的,并且可以正常查看图像。
 

补充:

图像是由像素组成的。黑白图像是单个像素矩阵,而彩色图像中每个颜色通道都有单独的像素矩阵,比如:红色,绿色,蓝色等颜色通道。


归一化作用:

1归一化是一种数理统计中常用的数据预处理手段,在机器学习中归一化通常将数据向量每个维度的数据映射到(0,1)或(-1,1)之间的区间或者将数据向量的某个范数映射为1,归一化好处有两个:

1、消除数据单位的影响:

其一可以将有单位的数据转为无单位的标准数据,如成年人的身高150-200cm、成年人体重50-90Kg,身高的单位是厘米而体重的单位是千克,不同维度的数据单位不一样,造成原始数据不能直接代入机器学习中进行处理,所以这些数据经过特定方法统一都映射到(0,1)这个区间,这样所有数据的取值范围都在同一个区间里的。


2、可提深度学习模型收敛速度:

如果不进行归一化处理,假设深度学习模型接受的输入向量只有两个维度x1和x2,其中X1取值为0-2000,x2取值为0-3。这样数据在进行梯度下降计算时梯度时对应一个很扁的椭圆形,很容易在垂直等高线的方向上走大量的之字形路线,是的迭代计算量大且迭代的次数多,造成深度学习模型收敛慢。
 

你可能感兴趣的:(数字图像处理,计算机视觉,深度学习,机器学习)