批量归一化【附详细解释及代码】

Contents

    • 1 Intorduction
    • 2 批量归一化层
      • 2.1 对全连接层做批量归一化
      • 2.2 对卷积层层做批量归一化
      • 2.3 预测时的批量归一化
    • 3 从零开始实现批量归一化
    • 4 使用pyTorch的nn模块实现批量归一化

1 Intorduction

批量归一化(batch normalization)层,它能让较深的神经网络的训练变得更加容易。

通常来说,数据标准化预处理对于浅层模型就足够有效了。随着模型训练的进行,当每层中参数更新时,靠近输出层的输出较难出现剧烈变化。但对深层神经网络来说,即使输入数据已做标准化,训练中模型参数的更新依然很容易造成靠近输出层输出的剧烈变化。这种计算数值的不稳定性通常令我们难以训练出有效的深度模型。

批量归一化的提出正是为了应对深度模型训练的挑战。在模型训练时,批量归一化利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。

2 批量归一化层

2.1 对全连接层做批量归一化

通常,我们将批量归一化层置于全连接层中的仿射变换和激活函数之间。设全连接层的输入为u,权重参数和偏差参数分别为W和b,激活函数为ϕ。设批量归一化的运算符为BN。那么,使用批量归一化的全连接层的输出为ϕ(BN(x))

其中归一化输入x由仿射变换得到:在这里插入图片描述

考虑一个由m个样本组成的小批量,仿射变换的输出正是批量归一化层的输入,对于小批量B中任意样本x(i)∈Rd,1≤i≤m,批量归一化层的输出同样是d维向量 在这里插入图片描述

归一化由以下几步求得:
1.对小批量B求均值和方差:在这里插入图片描述

2.使用按元素开方和按元素除法对x(i)标准化:在这里插入图片描述

这里ϵ>0是一个很小的常数,保证分母大于0。

在上面标准化的基础上,批量归一化层引入了两个可以学习的模型参数,拉伸(scale)参数 γ 和偏移(shift)参数 β。这两个参数和x(i)形状相同,皆为d维向量。它们与x(i)分别做按元素乘法(符号⊙)和加法计算:在这里插入图片描述

可以看到,当在这里插入图片描述
可理解为没有对输入执行批量归一化操作。

2.2 对卷积层层做批量归一化

对卷积层来说,批量归一化发生在卷积计算之后、应用激活函数之前。如果卷积计算输出多个通道,我们需要对这些通道的输出分别做批量归一化,且每个通道都拥有独立的拉伸和偏移参数,并均为标量。设小批量中有m个样本。在单个通道上,假设卷积计算输出的高和宽分别为p和q。我们需要对该通道中m×p×q个元素同时做批量归一化。对这些元素做标准化计算时,我们使用相同的均值和方差,即该通道中m×p×q个元素的均值和方差。

2.3 预测时的批量归一化

使用批量归一化训练时,我们可以将批量大小设得大一点,从而使批量内样本的均值和方差的计算都较为准确。将训练好的模型用于预测时,我们希望模型对于任意输入都有确定的输出。因此,单个样本的输出不应取决于批量归一化所需要的随机小批量中的均值和方差。通过移动平均估算整个训练数据集的样本均值和方差,并在预测时使用它们得到确定的输出。可见,和丢弃层一样,批量归一化层在训练模式和预测模式下的计算结果也是不一样的。

3 从零开始实现批量归一化

import time
import torch
from torch import nn, optim
import torch.nn.functional as F

import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def batch_norm(is_training, X, gamma, beta,moving_mean, moving_var, eps, momentum):
    if not is_training:
        # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
    else:
        assert len(X.shape)in (2,4)
        if len(X.shape) ==2:
              # 使用全连接层的情况,计算特征维上的均值和方差
            mean = X.mean(dim = 0)
            var = ((X-mean)**2).mean(dim = 0)
        else:
            # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。这里我们需要保持
            # X的形状以便后面可以做广播运算
            mean = X.mean(dim = 0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
            var = ((X-mean)**2).mean(dim = 0,keepdim=True).mean(dim = 2,keepdim=True).mean(dim = 3,keepdim=True)
        X_hat = (X - mean) / torch.sqrt(var + eps)
        # 更新移动平均的均值和方差
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
    Y = gamma * X_hat + beta  # 拉伸和偏移
    return Y, moving_mean, moving_var
# BatchNorm实例所需指定的num_features参数对于全连接层来说应为输出个数,对于卷积层来说则为输出通道数。
class BatchNorm(nn.Module):
    def __init__(self, num_features, num_dims):
        super(BatchNorm, self).__init__()
        if num_dims == 2:
            shape = (1, num_features)
        else:
            shape = (1, num_features, 1, 1)
        # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成0和1
        self.gamma = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        # 不参与求梯度和迭代的变量,全在内存上初始化成0
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.zeros(shape)

    def forward(self, X):
        # 如果X不在内存上,将moving_mean和moving_var复制到X所在显存上
        if self.moving_mean.device != X.device:
            self.moving_mean = self.moving_mean.to(X.device)
            self.moving_var = self.moving_var.to(X.device)
        # 保存更新过的moving_mean和moving_var, Module实例的traning属性默认为true, 调用.eval()后设成false
        Y, self.moving_mean, self.moving_var = batch_norm(self.training, 
            X, self.gamma, self.beta, self.moving_mean, self.moving_var, eps=1e-5, momentum=0.9)
        return Y
net = nn.Sequential(
    nn.Conv2d(1,6,5),
    BatchNorm(6, num_dims=4),
    nn.Sigmoid(),
    nn.MaxPool2d(2,2),
    nn.Conv2d(6,16,5),
    BatchNorm(16, num_dims=4),
    nn.Sigmoid(),
    nn.MaxPool2d(2,2),
    d2l.FlattenLayer(),
    nn.Linear(16*4*4, 120),
    BatchNorm(120, num_dims=2),
    nn.Sigmoid(),
    nn.Linear(120, 84),
    BatchNorm(84, num_dims=2),
    nn.Sigmoid(),
    nn.Linear(84,10)
)

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
training on  cuda
epoch 1, loss 0.9851, train acc 0.795, test acc 0.836, time 16.6 sec
epoch 2, loss 0.2272, train acc 0.866, test acc 0.854, time 15.9 sec
epoch 3, loss 0.1220, train acc 0.878, test acc 0.872, time 16.3 sec
epoch 4, loss 0.0826, train acc 0.888, test acc 0.861, time 17.3 sec
epoch 5, loss 0.0616, train acc 0.891, test acc 0.814, time 17.7 sec

4 使用pyTorch的nn模块实现批量归一化

net = nn.Sequential(
            nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
            nn.BatchNorm2d(6),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2), # kernel_size, stride
            nn.Conv2d(6, 16, 5),
            nn.BatchNorm2d(16),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2),
            d2l.FlattenLayer(),
            nn.Linear(16*4*4, 120),
            nn.BatchNorm1d(120),
            nn.Sigmoid(),
            nn.Linear(120, 84),
            nn.BatchNorm1d(84),
            nn.Sigmoid(),
            nn.Linear(84, 10)
        )
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

lr, num_epochs = 0.0001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
training on  cuda
epoch 1, loss 0.2753, train acc 0.905, test acc 0.887, time 11.8 sec
epoch 2, loss 0.1343, train acc 0.907, test acc 0.890, time 11.1 sec
epoch 3, loss 0.0883, train acc 0.908, test acc 0.889, time 11.3 sec
epoch 4, loss 0.0655, train acc 0.909, test acc 0.888, time 12.6 sec
epoch 5, loss 0.0518, train acc 0.909, test acc 0.889, time 13.6 sec

参考原文:《动手学深度学习(pyTorch)》

欢迎关注【OAOA

你可能感兴趣的:(pyTorch深度学习框架,神经网络,深度学习,卷积神经网络)