数据集链接:https://pan.baidu.com/s/1vZ27gKp8Pl-qICn_p2PaSw
提取码:cxe4
import torch
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pack_padded_sequence
import time
import matplotlib.pyplot as plt
import numpy as np
import gzip
import csv
import math
HIDDEN_SIZE=100
BATCH_SIZE=256
N_LAYER=2
N_EPOCHS=100
N_CHARS=128#名字长度,英文名字采用ASCLL码最大128
class NameDataset(Dataset):
def __init__(self,is_train_set=True):
filename='names_train.csv.gz' if is_train_set else 'names_test.csv.gz'
with gzip.open(filename,'rt')as f:
reader=csv.reader(f)
rows=list(reader)
self.names=[row[0] for row in rows]
self.len=len(self.names)
self.countries=[row[1] for row in rows]
self.country_list=list(sorted(set(self.countries)))#set消除本列中相同城市
self.country_dict=self.getCountryDict()
self.country_num=len(self.country_list)
def __getitem__(self, index):#用名字找国家索引
return self.names[index],self.country_dict[self.countries[index]]
def __len__(self):
return self.len
def getCountryDict(self):
country_dict=dict()
for idx,country_name in enumerate(self.country_list,0):
country_dict[country_name]=idx
return country_dict###################对齐对齐对齐########################################################################################################
def idx2country(self,index):
return self.country_list[index]
def getCountriesNum(self):
return self.country_num
trainset=NameDataset(is_train_set=True)
trainloader=DataLoader(trainset,batch_size=BATCH_SIZE,shuffle=True)
testset=NameDataset(is_train_set=False)
testloader=DataLoader(testset,batch_size=BATCH_SIZE,shuffle=False)
N_COUNTRY=trainset.getCountriesNum()
class RNNClassifier(torch.nn.Module):
def __init__(self,input_size,hidden_size,output_size,n_layers=1,bidirectional=True):
super(RNNClassifier, self).__init__()
self.hidden_size=hidden_size
self.n_layers=n_layers
self.n_directions=2 if bidirectional else 1
self.embedding=torch.nn.Embedding(input_size,hidden_size)#inputsize构建嵌入层
self.gru=torch.nn.GRU(hidden_size,hidden_size,n_layers,bidirectional=bidirectional)
self.fc=torch.nn.Linear(hidden_size*self.n_directions,output_size)
def _init_hidden(self,batch_size):
hidden=torch.zeros(self.n_layers*self.n_directions,batch_size,self.hidden_size)
return create_tensor(hidden)
def forward(self,input,seq_lengths):
input=input.t()#转置将BxS的矩阵变成SxB
batch_size=input.size(1)
hidden=self._init_hidden(batch_size)
embedding=self.embedding(input)
#pack them up加快gru速度
gru_input=torch.nn.utils.rnn.pack_padded_sequence(embedding,seq_lengths)
output,hidden=self.gru(gru_input,hidden)
if self.n_directions==2:
hidden_cat=torch.cat([hidden[-1],hidden[-2]],dim=1)
else:
hidden_cat=hidden[-1]
fc_output=self.fc(hidden_cat)
return fc_output
def name2list(name):
arr=[ord(c) for c in name]
return arr,len(arr)
def create_tensor(tensor):
return tensor
def make_tensors(names,countries):
sequences_and_lengths=[name2list(name) for name in names]
name_sequences=[s1[0] for s1 in sequences_and_lengths]
seq_lengths=torch.LongTensor([s1[1] for s1 in sequences_and_lengths])
# countries=countries.long()
seq_tensor=torch.zeros(len(name_sequences),seq_lengths.max()).long()
for idx,(seq, seq_len) in enumerate(zip(name_sequences,seq_lengths),0):#对输入数据进行补0操作
seq_tensor[idx, :seq_len]= torch.LongTensor(seq)
seq_lengths,perm_idx=seq_lengths.sort(dim=0,descending=True)
seq_tensor=seq_tensor[perm_idx]
countries=countries[perm_idx]
return create_tensor(seq_tensor),create_tensor(seq_lengths),create_tensor(countries)
def trainModel():
total_loss=0
for i, (names, countries) in enumerate(trainloader, 1):
inputs, seq_lengths, target=make_tensors(names, countries)
output=classifier(inputs, seq_lengths)
loss=criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss+=loss.item()
if i%10==0:
end = time.time()
print(f'[{end-start}]Epoch{epoch}',end='')
print(f'[{i*len(inputs)}/{len(trainset)}]',end='')
print(f'loss={total_loss/(i*len(inputs))}')
return total_loss
def testModel():
correct=0
total=len(testset)
print("evaluating trained model...")
with torch.no_grad():
for i,(names,countries)in enumerate(testloader,1):
inputs,seq_lengths,target=make_tensors(names,countries)
output=classifier(inputs,seq_lengths)
pred=output.max(dim=1,keepdim=True)[1]
correct+=pred.eq(target.view_as(pred)).sum().item()
percent='%.2f'%(100*correct/total)
print(f'Test set:Accuracy {correct}/{total}{" "}{percent}%')
return correct/total
if __name__ == '__main__':
classifier=RNNClassifier(N_CHARS,HIDDEN_SIZE,N_COUNTRY,N_LAYER)
criterion=torch.nn.CrossEntropyLoss()
optimizer=torch.optim.Adam(classifier.parameters(),lr=0.001)
start=time.time()
print("Training for %d epochs..."%N_EPOCHS)
acc_list=[]
for epoch in range(1,N_EPOCHS+1):
trainModel()
acc=testModel()
acc_list.append(acc)
epoch1=np.arange(1,len(acc_list)+1,1)
acc_list1=np.array(acc_list)
plt.plot(epoch1,acc_list1)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.grid()
plt.show()