Curator是netflix公司开源的一套zookeeper
客户端,目前是Apache的顶级项目。与Zookeeper提供的原生客户端相比,Curator的抽象层次更高,简化了Zookeeper客户端的开发量。Curator解决了很多zookeeper客户端非常底层的细节开发工作,包括连接重连、反复注册wathcer和NodeExistsException 异常等。
Curator主要解决了三类问题:
Curator由一系列的模块构成,对于一般开发者而言,常用的是curator-framework
和curator-recipes
:
curator-framework
:提供了常见的zk相关的底层操作curator-recipes
:提供了一些zk的典型使用场景的参考。本节重点关注的分布式锁就是该包提供的curator 4.3.0
支持zookeeper 3.4.x
和3.5
,但是需要注意curator
传递进来的依赖,需要和实际服务器端使用的版本相符,以使用zookeeper 3.4.14
为例。
<dependency>
<groupId>org.apache.curatorgroupId>
<artifactId>curator-frameworkartifactId>
<version>4.3.0version>
<exclusions>
<exclusion>
<groupId>org.apache.zookeepergroupId>
<artifactId>zookeeperartifactId>
exclusion>
exclusions>
dependency>
<dependency>
<groupId>org.apache.curatorgroupId>
<artifactId>curator-recipesartifactId>
<version>4.3.0version>
<exclusions>
<exclusion>
<groupId>org.apache.zookeepergroupId>
<artifactId>zookeeperartifactId>
exclusion>
exclusions>
dependency>
<dependency>
<groupId>org.apache.zookeepergroupId>
<artifactId>zookeeperartifactId>
<version>3.4.14version>
dependency>
添加curator
客户端配置:
@Configuration
public class CuratorConfig {
@Bean
public CuratorFramework curatorFramework(){
// 重试策略,这里使用的是指数补偿重试策略,重试3次,初始重试间隔1000ms,每次重试之后重试间隔递增。
RetryPolicy retry = new ExponentialBackoffRetry(1000, 3);
// 初始化Curator客户端:指定链接信息 及 重试策略
CuratorFramework client = CuratorFrameworkFactory.newClient("192.168.1.111:2181", retry);
client.start(); // 开始链接,如果不调用该方法,很多方法无法工作
return client;
}
}
Reentrant
和JDK
的ReentrantLock
类似, 意味着同一个客户端在拥有锁的同时,可以多次获取,不会被阻塞。它是由类InterProcessMutex
来实现。
// 常用构造方法
public InterProcessMutex(CuratorFramework client, String path)
// 获取锁
public void acquire();
// 带超时时间的可重入锁
public boolean acquire(long time, TimeUnit unit);
// 释放锁
public void release();
测试方法:
@Autowired
private CuratorFramework curatorFramework;
public void checkAndLock() {
InterProcessMutex mutex = new InterProcessMutex(curatorFramework, "/curator/lock");
try {
// 加锁
mutex.acquire();
// 处理业务
// 例如查询库存 扣减库存
// this.testSub(mutex); 如想重入,则需要使用同一个InterProcessMutex对象
// 释放锁
mutex.release();
} catch (Exception e) {
e.printStackTrace();
}
}
public void testSub(InterProcessMutex mutex) {
try {
mutex.acquire();
System.out.println("测试可重入锁。。。。");
mutex.release();
} catch (Exception e) {
e.printStackTrace();
}
}
注意:如想重入,则需要使用同一个InterProcessMutex对象。
具体实现:InterProcessSemaphoreMutex
与InterProcessMutex
调用方法类似,区别在于该锁是不可重入的,在同一个线程中不可重入。
public InterProcessSemaphoreMutex(CuratorFramework client, String path);
public void acquire();
public boolean acquire(long time, TimeUnit unit);
public void release();
案例:
@Autowired
private CuratorFramework curatorFramework;
public void deduct() {
InterProcessSemaphoreMutex mutex = new InterProcessSemaphoreMutex(curatorFramework, "/curator/lock");
try {
mutex.acquire();
// 处理业务
// 例如查询库存 扣减库存
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
mutex.release();
} catch (Exception e) {
e.printStackTrace();
}
}
}
类似JDK
的ReentrantReadWriteLock
。一个拥有写锁的线程可重入读锁,但是读锁却不能进入写锁。这也意味着写锁可以降级成读锁。从读锁升级成写锁是不成的。主要实现类InterProcessReadWriteLock
:
// 构造方法
public InterProcessReadWriteLock(CuratorFramework client, String basePath);
// 获取读锁对象
InterProcessMutex readLock();
// 获取写锁对象
InterProcessMutex writeLock();
注意:写锁在释放之前会一直阻塞请求线程,而读锁不会
public void testZkReadLock() {
try {
InterProcessReadWriteLock rwlock = new InterProcessReadWriteLock(curatorFramework, "/curator/rwlock");
rwlock.readLock().acquire(10, TimeUnit.SECONDS);
// TODO:一顿读的操作。。。。
//rwlock.readLock().unlock();
} catch (Exception e) {
e.printStackTrace();
}
}
public void testZkWriteLock() {
try {
InterProcessReadWriteLock rwlock = new InterProcessReadWriteLock(curatorFramework, "/curator/rwlock");
rwlock.writeLock().acquire(10, TimeUnit.SECONDS);
// TODO:一顿写的操作。。。。
//rwlock.writeLock().unlock();
} catch (Exception e) {
e.printStackTrace();
}
}
Multi Shared Lock
是一个锁的容器。当调用acquire
, 所有的锁都会被acquire
,如果请求失败,所有的锁都会被release
。同样调用release
时所有的锁都被release
(失败被忽略)。基本上,它就是组锁的代表,在它上面的请求释放操作都会传递给它包含的所有的锁。实现类InterProcessMultiLock
:
// 构造函数需要包含的锁的集合,或者一组ZooKeeper的path
public InterProcessMultiLock(List<InterProcessLock> locks);
public InterProcessMultiLock(CuratorFramework client, List<String> paths);
// 获取锁
public void acquire();
public boolean acquire(long time, TimeUnit unit);
// 释放锁
public synchronized void release();
一个计数的信号量类似JDK
的Semaphore
。JDK
中Semaphore
维护的一组许可(permits
),而Cubator
中称之为租约(Lease
)。注意,所有的实例必须使用相同的numberOfLeases
值。调用acquire
会返回一个租约对象。客户端必须在finally
中close
这些租约对象,否则这些租约会丢失掉。但是,如果客户端session
由于某种原因比如crash
丢掉, 那么这些客户端持有的租约会自动close
, 这样其它客户端可以继续使用这些租约。主要实现类InterProcessSemaphoreV2
:
// 构造方法
public InterProcessSemaphoreV2(CuratorFramework client, String path, int maxLeases);
// 注意一次你可以请求多个租约,如果Semaphore当前的租约不够,则请求线程会被阻塞。
// 同时还提供了超时的重载方法
public Lease acquire();
public Collection<Lease> acquire(int qty);
public Lease acquire(long time, TimeUnit unit);
public Collection<Lease> acquire(int qty, long time, TimeUnit unit)
// 租约还可以通过下面的方式返还
public void returnAll(Collection<Lease> leases);
public void returnLease(Lease lease);
案例代码:
StockController中添加方法:
@GetMapping("test/semaphore")
public String testSemaphore(){
this.stockService.testSemaphore();
return "hello Semaphore";
}
StockService中添加方法:
public void testSemaphore() {
// 设置资源量 限流的线程数
InterProcessSemaphoreV2 semaphoreV2 = new InterProcessSemaphoreV2(curatorFramework, "/locks/semaphore", 5);
try {
Lease acquire = semaphoreV2.acquire();// 获取资源,获取资源成功的线程可以继续处理业务操作。否则会被阻塞住
this.redisTemplate.opsForList().rightPush("log", "10010获取了资源,开始处理业务逻辑。" + Thread.currentThread().getName());
TimeUnit.SECONDS.sleep(10 + new Random().nextInt(10));
this.redisTemplate.opsForList().rightPush("log", "10010处理完业务逻辑,释放资源=====================" + Thread.currentThread().getName());
semaphoreV2.returnLease(acquire); // 手动释放资源,后续请求线程就可以获取该资源
} catch (Exception e) {
e.printStackTrace();
}
}
DistributedBarrier
构造函数中barrierPath
参数用来确定一个栅栏,只要barrierPath
参数相同(路径相同)就是同一个栅栏。通常情况下栅栏的使用如下:
client
设置一个栅栏waitOnBarrier()
等待栅栏移除,程序处理线程阻塞client
移除栅栏,其他客户端的处理程序就会同时继续运行。 DistributedBarrier
类的主要方法如下:
setBarrier() - 设置栅栏
waitOnBarrier() - 等待栅栏移除
removeBarrier() - 移除栅栏
DistributedDoubleBarrier
双栅栏,允许客户端在计算的开始和结束时同步。当足够的进程加入到双栅栏时,进程开始计算,当计算完成时,离开栅栏。DistributedDoubleBarrier
实现了双栅栏的功能。构造函数如下:
// client - the client
// barrierPath - path to use
// memberQty - the number of members in the barrier
public DistributedDoubleBarrier(CuratorFramework client, String barrierPath, int memberQty);
enter()、enter(long maxWait, TimeUnit unit) - 等待同时进入栅栏
leave()、leave(long maxWait, TimeUnit unit) - 等待同时离开栅栏
memberQty
是成员数量,当enter
方法被调用时,成员被阻塞,直到所有的成员都调用了enter
。当leave
方法被调用时,它也阻塞调用线程,直到所有的成员都调用了leave
。
注意:参数memberQty
的值只是一个阈值,而不是一个限制值。当等待栅栏的数量大于或等于这个值栅栏就会打开!
与栅栏(DistributedBarrier
)一样,双栅栏的barrierPath
参数也是用来确定是否是同一个栅栏的,双栅栏的使用情况如下:
DistributedDoubleBarrier
),然后调用enter()
方法,等待栅栏数量达到memberQty
时就可以进入栅栏。memberQty
,多个客户端同时停止阻塞继续运行,直到执行leave()
方法,等待memberQty
个数量的栅栏同时阻塞到leave()
方法中。memberQty
个数量的栅栏同时阻塞到leave()
方法中,多个客户端的leave()
方法停止阻塞,继续运行。利用ZooKeeper
可以实现一个集群共享的计数器。只要使用相同的path
就可以得到最新的计数器值, 这是由ZooKeeper
的一致性保证的。Curator
有两个计数器, 一个是用int
来计数,一个用long
来计数。
共享计数器SharedCount
相关方法如下:
// 构造方法
public SharedCount(CuratorFramework client, String path, int seedValue);
// 获取共享计数的值
public int getCount();
// 设置共享计数的值
public void setCount(int newCount) throws Exception;
// 当版本号没有变化时,才会更新共享变量的值
public boolean trySetCount(VersionedValue<Integer> previous, int newCount);
// 通过监听器监听共享计数的变化
public void addListener(SharedCountListener listener);
public void addListener(final SharedCountListener listener, Executor executor);
// 共享计数在使用之前必须开启
public void start() throws Exception;
// 关闭共享计数
public void close() throws IOException;
使用案例:
StockController:
@GetMapping("test/zk/share/count")
public String testZkShareCount(){
this.stockService.testZkShareCount();
return "hello shareData";
}
StockService:
public void testZkShareCount() {
try {
// 第三个参数是共享计数的初始值
SharedCount sharedCount = new SharedCount(curatorFramework, "/curator/count", 0);
// 启动共享计数器
sharedCount.start();
// 获取共享计数的值
int count = sharedCount.getCount();
// 修改共享计数的值
int random = new Random().nextInt(1000);
sharedCount.setCount(random);
System.out.println("我获取了共享计数的初始值:" + count + ",并把计数器的值改为:" + random);
sharedCount.close();
} catch (Exception e) {
e.printStackTrace();
}
}
DistributedAtomicNumber
接口是分布式原子数值类型的抽象,定义了分布式原子数值类型需要提供的方法。
DistributedAtomicNumber
接口有两个实现:DistributedAtomicLong
和 DistributedAtomicInteger
这两个实现将各种原子操作的执行委托给了DistributedAtomicValue
,所以这两种实现是类似的,只不过表示的数值类型不同而已。这里以DistributedAtomicLong
为例进行演示
DistributedAtomicLong
除了计数的范围比SharedCount
大了之外,比SharedCount
更简单易用。它首先尝试使用乐观锁的方式设置计数器, 如果不成功(比如期间计数器已经被其它client更新了), 它使用InterProcessMutex
方式来更新计数值。此计数器有一系列的操作:
get()
: 获取当前值increment()
:加一decrement()
: 减一add()
:增加特定的值subtract()
: 减去特定的值trySet()
: 尝试设置计数值forceSet()
: 强制设置计数值最后必须检查返回结果的succeeded()
, 代表此操作是否成功。如果操作成功, preValue()
代表操作前的值, postValue()
代表操作后的值。