Regression 就是找到一个函数 function ,通过输入特征 xx,输出一个数值 Scalar。
应用举例
股市预测(Stock market forecast)
输入:过去10年股票的变动、新闻咨询、公司并购咨询等
输出:预测股市明天的平均值
自动驾驶(Self-driving Car)
输入:无人车上的各个sensor的数据,例如路况、测出的车距等
输出:方向盘的角度
商品推荐(Recommendation)
输入:商品A的特性,商品B的特性
输出:购买商品B的可能性
Pokemon精灵攻击力预测(Combat Power of a pokemon):
输入:进化前的CP值、物种(Bulbasaur)、血量(HP)、重量(Weight)、高度(Height)
输出:进化后的CP值
step1:模型假设,选择模型框架(线性模型)
step2:模型评估,如何判断众多模型的好坏(损失函数)
step3:模型优化,如何筛选最优的模型(梯度下降)
以一个特征 x c p x_{cp} xcp 为例,线性模型假设 y = b + w ⋅ x c p y = b + w·x_{cp} y=b+w⋅xcp ,所以 w w w 和 b b b 可以猜测很多模型:
f 1 : y = 10.0 + 9.0 ⋅ x c p f 2 : y = 9.8 + 9.2 ⋅ x c p f 3 : y = − 0.8 − 1.2 ⋅ x c p ⋅ ⋅ ⋅ f_1: y = 10.0 + 9.0·x_{cp} \\ f_2: y = 9.8 + 9.2·x_{cp} \\ f_3: y = - 0.8 - 1.2·x_{cp} \\ ··· f1:y=10.0+9.0⋅xcpf2:y=9.8+9.2⋅xcpf3:y=−0.8−1.2⋅xcp⋅⋅⋅
虽然可以做出很多假设,但在这个例子中,显然 f 3 : y = − 0.8 − 1.2 ⋅ x c p f_3: y = - 0.8 - 1.2·x_{cp} f3:y=−0.8−1.2⋅xcp 的假设是不合理的,不能进化后CP值是个负值吧~~
在实际应用中,输入特征肯定不止 x c p x_{cp} xcp 这一个。例如,进化前的CP值、物种(Bulbasaur)、血量(HP)、重量(Weight)、高度(Height)等,特征会有很多。
所以我们假设 线性模型 Linear model: y = b + ∑ w i x i y = b + \sum w_ix_i y=b+∑wixi
注意:接下来的内容需要看清楚是【单个特征】还是【多个特征】的示例
【单个特征】: x c p x_{cp} xcp
这里定义 x 1 x^1 x1 是进化前的CP值, y ^ 1 \hat{y}^1 y^1 进化后的CP值, ^ \hat{} ^ 所代表的是真实值
将10组原始数据在二维图中展示,图中的每一个点 ( x c p n , y ^ n ) (x_{cp}^n,\hat{y}^n) (xcpn,y^n) 对应着 进化前的CP值 和 进化后的CP值。
有了这些真实的数据,那我们怎么衡量模型的好坏呢?从数学的角度来讲,我们使用距离。求【进化后的CP值】与【模型预测的CP值】差,来判定模型的好坏。也就是使用损失函数(Loss function) 来衡量模型的好坏,统计10组原始数据 ( y ^ n − f ( x c p n ) ) 2 \left ( \hat{y}^n - f(x_{cp}^n) \right )^2 (y^n−f(xcpn))2 的和,和越小模型越好。
公式推导的过程:
L ( f ) = ∑ n = 1 10 ( y ^ n − f ( x c p n ) ) 2 , 将 【 f ( x ) = y 】 , 【 y = b + w ⋅ x c p 】 代 入 = ∑ n = 1 10 ( y ^ n − ( b + w ⋅ x c p ) ) 2 \begin{aligned} L(f) & = \sum_{n=1}^{10}\left ( \hat{y}^n - f(x_{cp}^n) \right )^2,将【f(x) = y】, 【y= b + w·x_{cp}】代入 \\ & = \sum_{n=1}^{10}\left ( \hat{y}^n - (b + w·x_{cp}) \right )^2\\ \end{aligned} L(f)=n=1∑10(y^n−f(xcpn))2,将【f(x)=y】,【y=b+w⋅xcp】代入=n=1∑10(y^n−(b+w⋅xcp))2
最终定义 损失函数 Loss function: L ( w , b ) = ∑ n = 1 10 ( y ^ n − ( b + w ⋅ x c p ) ) 2 L(w,b)= \sum_{n=1}^{10}\left ( \hat{y}^n - (b + w·x_{cp}) \right )^2 L(w,b)=∑n=110(y^n−(b+w⋅xcp))2
我们将 w w w, b b b 在二维坐标图中展示,如图所示:
可以与后面的图11(等高线)进行对比
【单个特征】: x c p x_{cp} xcp
已知损失函数是 L ( w , b ) = ∑ n = 1 10 ( y ^ n − ( b + w ⋅ x c p ) ) 2 L(w,b)= \sum_{n=1}^{10}\left ( \hat{y}^n - (b + w·x_{cp}) \right )^2 L(w,b)=∑n=110(y^n−(b+w⋅xcp))2 ,需要找到一个令结果最小的 f ∗ f^* f∗,在实际的场景中,我们遇到的参数肯定不止 w w w, b b b。
先从最简单的只有一个参数 w w w入手,定义 w ∗ = a r g min x L ( w ) w^* = arg\ \underset{x}{\operatorname{\min}} L(w) w∗=arg xminL(w)
首先在这里引入一个概念 学习率 :移动的步长,如图7中 η \eta η
步骤1中,我们随机选取一个 w 0 w^0 w0,如图8所示,我们有可能会找到当前的最小值,并不是全局的最小值,这里我们保留这个疑问,后面解决。
解释完单个模型参数 w w w,引入2个模型参数 w w w 和 b b b , 其实过程是类似的,需要做的是偏微分,过程如图9所示,偏微分的求解结果文章后面会有解释,详细的求解过程自行Google。
整理成一个更简洁的公式:
如果把 w w w 和 b b b 在图形中展示:
我们通过梯度下降gradient descent不断更新损失函数的结果,这个结果会越来越小,那这种方法找到的结果是否都是正确的呢?
其实还会有其他的问题:
使用训练集和测试集的平均误差来验证模型的好坏
我们使用将10组原始数据,训练集求得平均误差为31.9,如图所示:
然后再使用10组Pokemons测试模型,测试集求得平均误差为35.0 如图所示:
在模型上,我们还可以进一部优化,选择更复杂的模型,使用1元2次方程举例,如图17,发现训练集求得平均误差为15.4,测试集的平均误差为18.4
这里我们又提出一个新的问题:是不是能画出直线就是线性模型,各种复杂的曲线就是非线性模型?
其实还是线性模型,因为把 x c p 1 x_{cp}^1 xcp1 = ( x c p ) 2 (x_{cp})^2 (xcp)2 看作一个特征,那么 y = b + w 1 ⋅ x c p + w 2 ⋅ x c p 1 y = b + w_1·x_{cp} + w_2·x_{cp}^1 y=b+w1⋅xcp+w2⋅xcp1 其实就是线性模型。
在模型上,我们再可以进一部优化,使用更高次方的模型,如图所示
在训练集上面表现更为优秀的模型,为什么在测试集上效果反而变差了?这就是模型在训练集上过拟合的问题。
如图所示,每一个模型结果都是一个集合, 5 次 模 型 包 ⊇ 4 次 模 型 ⊇ 3 次 模 型 5次模型包 \supseteq 4次模型 \supseteq 3次模型 5次模型包⊇4次模型⊇3次模型
所以在4次模型里面找到的最佳模型,肯定不会比5次模型里面找到更差
将错误率结果图形化展示,发现3次方以上的模型,已经出现了过拟合的现象:
输入更多Pokemons数据,相同的起始CP值,但进化后的CP差距竟然是2倍。如图21,其实将Pokemons种类通过颜色区分,就会发现Pokemons种类是隐藏得比较深得特征,不同Pokemons种类影响了进化后的CP值的结果。
通过对 Pokemons种类 判断,将 4个线性模型 合并到一个线性模型中
在最开始我们有很多特征,图形化分析特征,将血量(HP)、重量(Weight)、高度(Height)也加入到模型中
更多特征,更多input,数据量没有明显增加,仍旧导致overfitting
更多特征,但是权重 w w w 可能会使某些特征权值过高,仍旧导致overfitting,所以加入正则化
从这地方开始信息量开始变大了很多,对于小白来说感觉很多微分偏微分这种高等数学概念上的东西如果没学好的话感觉理解起来还是蛮男难的,这里要推荐一下李航老师的《统计学习方法》这个书介绍相关内容还是蛮全面的,不会对于数学部分还是要自己去学才行啊。另外在GitHub上面也有很多大佬有相关项目,这里推荐一个关于统计学习方法代码实现的仓库
统计学习方法代码实现