完成对MsCOCO数据集特定种类的提取并与yolov5上训练

为何需要提取出特点的种类?

1.提取出特定种类的数据集训练时间更短,coco数据集大概有120000张,而只包含“people,car,bicycle,motorcycle”的照片只有6万张,而只包含car的数据集只有两万张,提取出所需种类的数据集可以成倍地减少漫长的训练时间。
2.训练所得的模型更小,得益于训练目标数量的减少,得到的网络模型的大小也会变化,我用80个种类的数据集在yolov5s训练得到的模型为15.7m,而用4个种类的数据集训练得到的模型大小为14.0m,虽然差别不算太大,但对于在较低端的单片机平台上运行的项目来说这11%意义非凡。

如何提取自己需要的种类?

提取出需要的种类,并将json文件转化成xml文件

from pycocotools.coco import COCO
import os
import shutil
from tqdm import tqdm
import skimage.io as io
import matplotlib.pyplot as plt
import cv2
from PIL import Image, ImageDraw

#the path you want to save your results for coco to voc
savepath="/coco_class/"
img_dir=savepath+'images/val2014/'
anno_dir=savepath+'Annotations/val2014/'
# datasets_list=['train2014', 'val2014']
# datasets_list=['train2014']
datasets_list=['val2014']
classes_names = ["person","bicycle","car","motorbike", "bus", "truck"] 

#Store annotations and train2014/val2014/... in this folder
dataDir= '/coco/'  

headstr = """\

    VOC
    %s
    
        My Database
        COCO
        flickr
        NULL
    
    
        %d
        %d
        %d
    
    0
"""
objstr = """\
    
        %s
        Unspecified
        0
        0
        
            %d
            %d
            %d
            %d
        
    
"""

tailstr = '''\

'''

#if the dir is not exists,make it,else delete it
def mkr(path):
    if os.path.exists(path):
        shutil.rmtree(path)
        os.mkdir(path)
    else:
        os.mkdir(path)
mkr(img_dir)
mkr(anno_dir)
def id2name(coco):
    classes=dict()
    for cls in coco.dataset['categories']:
        classes[cls['id']]=cls['name']
    return classes

def write_xml(anno_path,head, objs, tail):
    f = open(anno_path, "w")
    f.write(head)
    for obj in objs:
        f.write(objstr%(obj[0],obj[1],obj[2],obj[3],obj[4]))
    f.write(tail)


def save_annotations_and_imgs(coco,dataset,filename,objs):
    #eg:COCO_train2014_000000196610.jpg-->COCO_train2014_000000196610.xml
    anno_path=anno_dir+filename[:-3]+'xml'
    img_path=dataDir+'images/'+dataset+'/'+filename
    # print(img_path)
    dst_imgpath=img_dir+filename
    print(img_path,'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa')

    img=cv2.imread(img_path)
    # print(img)
    if (img.shape[2] == 1):
        print(filename + " not a RGB image")
        return

    shutil.copy(img_path, dst_imgpath)

    head=headstr % (filename, img.shape[1], img.shape[0], img.shape[2])
    tail = tailstr
    write_xml(anno_path,head, objs, tail)


def showimg(coco,dataset,img,classes,cls_id,show=True):
    global dataDir
    I=Image.open('%s/%s/%s/%s'%(dataDir,'images',dataset,img['file_name']))
    #Get the annotated information by ID
    annIds = coco.getAnnIds(imgIds=img['id'], catIds=cls_id, iscrowd=None)
    # print(annIds)
    anns = coco.loadAnns(annIds)
    # print(anns)
    # coco.showAnns(anns)
    objs = []
    for ann in anns:
        class_name=classes[ann['category_id']]
        if class_name in classes_names:
            print(class_name)
            if 'bbox' in ann:
                bbox=ann['bbox']
                xmin = int(bbox[0])
                ymin = int(bbox[1])
                xmax = int(bbox[2] + bbox[0])
                ymax = int(bbox[3] + bbox[1])
                obj = [class_name, xmin, ymin, xmax, ymax]
                objs.append(obj)
                draw = ImageDraw.Draw(I)
                draw.rectangle([xmin, ymin, xmax, ymax])
    if show:
        plt.figure()
        plt.axis('off')
        plt.imshow(I)
        plt.show()

    return objs

for dataset in datasets_list:
    #./COCO/annotations/instances_train2014.json
    annFile='{}/annotations/instances_{}.json'.format(dataDir,dataset)

    #COCO API for initializing annotated data
    coco = COCO(annFile)
    '''
    When the COCO object is created, the following information will be output:
    loading annotations into memory...
    Done (t=0.81s)
    creating index...
    index created!
    So far, the JSON script has been parsed and the images are associated with the corresponding annotated data.
    '''
    #show all classes in coco
    classes = id2name(coco)
    print(classes)
    #[1, 2, 3, 4, 6, 8]
    classes_ids = coco.getCatIds(catNms=classes_names)
    print(classes_ids)
    # exit()
    for cls in classes_names:
        #Get ID number of this class
        cls_id=coco.getCatIds(catNms=[cls])
        img_ids=coco.getImgIds(catIds=cls_id)
        print(cls,len(img_ids))
        # imgIds=img_ids[0:10]
        for imgId in tqdm(img_ids):
            img = coco.loadImgs(imgId)[0]
            filename = img['file_name']
            # print(filename)
            objs=showimg(coco, dataset, img, classes,classes_ids,show=False)
            print(objs)
            save_annotations_and_imgs(coco, dataset, filename, objs)



因为yolov5是用不了xml文件的,所以要将他转化成txt文件

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
 
 
classes = ['person','bicycle','car','motorbike', 'bus', 'truck']  
#classes = ['truck']  
 
 
 
def convert(size, box):
    dw = 1./(size[0])
    dh = 1./(size[1])
    x = (box[0] + box[1])/2.0 - 1
    y = (box[2] + box[3])/2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)
 
def convert_annotation(image_id):
    in_file = open('/coco_class/Annotations/train2014/%s.xml'%(image_id))
    out_file = open('/coco_class/labels/train2014/%s.txt'%(image_id), 'w')
    tree=ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
 
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        print(cls)
        if cls not in classes or int(difficult)==1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
 
 
data_path = '/coco_class/images/train2014'
img_names = os.listdir(data_path)
 
list_file = open('/coco_class/class_train.txt', 'w')
for img_name in img_names:
    if not os.path.exists('coco_class/labels/train2014'):
        os.makedirs('/coco_class/labels/train2014')
 
    list_file.write('/coco_class/images/train2014/%s\n'%img_name)
    image_id = img_name[:-4]
    convert_annotation(image_id)
 
list_file.close()

成功转化后要注意有些坏的转化文件要修改后才能运行
最后附上训练得到的结果(由于算力的限制训练的效果不算很理想,加上有两类单车和摩托车经常搞混淆,所以这两类对map的拉低非常的大,但在实际应用中我将单车和摩托车是归为一类去处理的,这样实际上我的map实际可以达到0.8+以上):
完成对MsCOCO数据集特定种类的提取并与yolov5上训练_第1张图片
完成对MsCOCO数据集特定种类的提取并与yolov5上训练_第2张图片

完成对MsCOCO数据集特定种类的提取并与yolov5上训练_第3张图片

这里是引用https://blog.csdn.net/weixin_42224823/article/details/106282114?ops_request_misc=%25257B%252522request%25255Fid%252522%25253A%252522161337082316780262559475%252522%25252C%252522scm%252522%25253A%25252220140713.130102334.pc%25255Fall.%252522%25257D&request_id=161337082316780262559475&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_v2~rank_v29-3-106282114.first_rank_v2_pc_rank_v29&utm_term=coco%25E6%258F%2590%25E5%258F%2596yolo

你可能感兴趣的:(深度学习,图像识别,计算机视觉)