Sharding-JDBC(六)5.1.0版本,实现按月分表、自动建表、自动刷新节点

目录

    • 1.Maven 依赖
    • 2.创建表结构
    • 3.yml 配置
    • 4.TimeShardingAlgorithm.java 分片算法类
    • 5.ShardingAlgorithmTool.java 分片工具类
    • 6.ShardingTablesLoadRunner.java 初始化缓存类
    • 7.SpringUtil.java Spring工具类
    • 8.源码测试
    • 9.测试结果
    • 10.代码地址

背景: 项目用户数据库表量太大,对数据按月分表,需要满足如下需求:

  1. 将数据库按月分表;
  2. 自动建表;
  3. 数据自动跨表查询。

ShardingJDBC 4 升到 5 过后还是解决了许多问题,4版本的分页、跨库和子查询问题都解决来了,性能也提高了。

1.Maven 依赖


<dependency>
    <groupId>org.apache.shardingspheregroupId>
    <artifactId>shardingsphere-jdbc-core-spring-boot-starterartifactId>
    <version>5.1.0version>
dependency>

<dependency>
    <groupId>org.apache.tomcatgroupId>
    <artifactId>tomcat-dbcpartifactId>
    <version>10.0.16version>
dependency>


<dependency>
    <groupId>com.github.pagehelpergroupId>
    <artifactId>pagehelper-spring-boot-starterartifactId>
    <version>1.3.0version>
dependency>

2.创建表结构

-- ------------------------------
-- 用户表
-- ------------------------------
CREATE TABLE `t_user` (
  `id` bigint(16) NOT NULL COMMENT '主键',
  `username` varchar(64) NOT NULL COMMENT '用户名',
  `password` varchar(64) NOT NULL COMMENT '密码',
  `age` int(8) NOT NULL COMMENT '年龄',
  `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户表';

-- ------------------------------
-- 用户表202201
-- ------------------------------
CREATE TABLE `t_user_202201` (
  `id` bigint(16) NOT NULL COMMENT '主键',
  `username` varchar(64) NOT NULL COMMENT '用户名',
  `password` varchar(64) NOT NULL COMMENT '密码',
  `age` int(8) NOT NULL COMMENT '年龄',
  `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户表202201';

3.yml 配置

server:
  port: 8081

spring:
  ### 处理连接池冲突 #####
  main:
    allow-bean-definition-overriding: true
  shardingsphere:
    # 是否启用 Sharding
    enabled: true
    # 打印sql
#    props:
#      sql-show: true
    datasource:
      names: mydb
      mydb:
        type: com.alibaba.druid.pool.DruidDataSource
        url: jdbc:mysql://localhost:3306/mydb?useUnicode=true&characterEncoding=UTF-8&serverTimezone=Asia/Shanghai
        driver-class-name: com.mysql.cj.jdbc.Driver
        username: root
        password: root
        # 数据源其他配置
        initialSize: 5
        minIdle: 5
        maxActive: 20
        maxWait: 60000
        timeBetweenEvictionRunsMillis: 60000
        minEvictableIdleTimeMillis: 300000
        validationQuery: SELECT 1 FROM DUAL
        testWhileIdle: true
        testOnBorrow: false
        testOnReturn: false
        poolPreparedStatements: true
        # 配置监控统计拦截的filters,去掉后监控界面sql无法统计,'wall'用于防火墙
        #filters: stat,wall,log4j
        maxPoolPreparedStatementPerConnectionSize: 20
        useGlobalDataSourceStat: true
        connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=500
    rules:
      sharding:
        # 表策略配置
        tables:
          # t_user 是逻辑表
          t_user:
            # 配置数据节点,这里是按月分表
            # 示例1:时间范围设置在202201 ~ 210012
            # actualDataNodes: mydb.t_user_$->{2022..2100}0$->{1..9},mydb.t_user_$->{2022..2100}1$->{0..2}
            # 示例2:时间范围设置在202201 ~ 202203
            actualDataNodes: mydb.t_user
            tableStrategy:
              # 使用标准分片策略
              standard:
                # 配置分片字段
                shardingColumn: create_time
                # 分片算法名称,不支持大写字母和下划线,否则启动就会报错
                shardingAlgorithmName: time-sharding-altorithm
          # t_log 是逻辑表
          t_log:
            # 配置数据节点,这里是按月分表
            # 示例1:时间范围设置在202201 ~ 210012
            # actualDataNodes: mydb.t_user_$->{2022..2100}0$->{1..9},mydb.t_user_$->{2022..2100}1$->{0..2}
            # 示例2:时间范围设置在202201 ~ 202203
            actualDataNodes: mydb.t_log
            tableStrategy:
              # 使用标准分片策略
              standard:
                # 配置分片字段
                shardingColumn: create_time
                # 分片算法名称,不支持大写字母和下划线,否则启动就会报错
                shardingAlgorithmName: time-sharding-altorithm
        # 分片算法配置
        shardingAlgorithms:
          # 分片算法名称,不支持大写字母和下划线,否则启动就会报错
          time-sharding-altorithm:
            # 类型:自定义策略
            type: CLASS_BASED
            props:
              # 分片策略
              strategy: standard
              # 分片算法类
              algorithmClassName: com.demo.module.config.sharding.TimeShardingAlgorithm

# mybatis-plus
mybatis-plus:
  mapper-locations: classpath*:/mapper/*Mapper.xml
  # 实体扫描,多个package用逗号或者分号分隔
  typeAliasesPackage: cn.agile.stats.*.entity
  # 测试环境打印sql
  configuration:
    log-impl: org.apache.ibatis.logging.stdout.StdOutImpl

pagehelper:
  helperDialect: postgresql

4.TimeShardingAlgorithm.java 分片算法类

import com.demo.module.config.sharding.enums.ShardingTableCacheEnum;
import com.google.common.collect.Range;
import lombok.extern.slf4j.Slf4j;
import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm;

import java.sql.Timestamp;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.*;
import java.util.function.Function;

/**
 * 

@Title TimeShardingAlgorithm *

@Description 分片算法,按月分片 * * @author ACGkaka * @date 2022/12/20 11:33 */ @Slf4j public class TimeShardingAlgorithm implements StandardShardingAlgorithm<Timestamp> { /** * 分片时间格式 */ private static final DateTimeFormatter TABLE_SHARD_TIME_FORMATTER = DateTimeFormatter.ofPattern("yyyyMM"); /** * 完整时间格式 */ private static final DateTimeFormatter DATE_TIME_FORMATTER = DateTimeFormatter.ofPattern("yyyyMMdd HH:mm:ss"); /** * 表分片符号,例:t_contract_202201 中,分片符号为 "_" */ private final String TABLE_SPLIT_SYMBOL = "_"; /** * 精准分片 * @param tableNames 对应分片库中所有分片表的集合 * @param preciseShardingValue 分片键值,其中 logicTableName 为逻辑表,columnName 分片键,value 为从 SQL 中解析出来的分片键的值 * @return 表名 */ @Override public String doSharding(Collection<String> tableNames, PreciseShardingValue<Timestamp> preciseShardingValue) { String logicTableName = preciseShardingValue.getLogicTableName(); ShardingTableCacheEnum logicTable = ShardingTableCacheEnum.of(logicTableName); if (logicTable == null) { log.error(">>>>>>>>>> 【ERROR】数据表类型错误,请稍后重试,logicTableNames:{},logicTableName:{}", ShardingTableCacheEnum.logicTableNames(), logicTableName); throw new IllegalArgumentException("数据表类型错误,请稍后重试"); } log.info(">>>>>>>>>> 【INFO】精确分片,节点配置表名:{},数据库缓存表名:{}", tableNames, logicTable.resultTableNamesCache()); LocalDateTime dateTime = preciseShardingValue.getValue().toLocalDateTime(); String resultTableName = logicTableName + "_" + dateTime.format(TABLE_SHARD_TIME_FORMATTER); // 检查分表获取的表名是否存在,不存在则自动建表 return ShardingAlgorithmTool.getShardingTableAndCreate(logicTable, resultTableName); } /** * 范围分片 * @param tableNames 对应分片库中所有分片表的集合 * @param rangeShardingValue 分片范围 * @return 表名集合 */ @Override public Collection<String> doSharding(Collection<String> tableNames, RangeShardingValue<Timestamp> rangeShardingValue) { String logicTableName = rangeShardingValue.getLogicTableName(); ShardingTableCacheEnum logicTable = ShardingTableCacheEnum.of(logicTableName); if (logicTable == null) { log.error(">>>>>>>>>> 【ERROR】逻辑表范围异常,请稍后重试,logicTableNames:{},logicTableName:{}", ShardingTableCacheEnum.logicTableNames(), logicTableName); throw new IllegalArgumentException("逻辑表范围异常,请稍后重试"); } log.info(">>>>>>>>>> 【INFO】范围分片,节点配置表名:{},数据库缓存表名:{}", tableNames, logicTable.resultTableNamesCache()); // between and 的起始值 Range<Timestamp> valueRange = rangeShardingValue.getValueRange(); boolean hasLowerBound = valueRange.hasLowerBound(); boolean hasUpperBound = valueRange.hasUpperBound(); // 获取最大值和最小值 Set<String> tableNameCache = logicTable.resultTableNamesCache(); LocalDateTime min = hasLowerBound ? valueRange.lowerEndpoint().toLocalDateTime() :getLowerEndpoint(tableNameCache); LocalDateTime max = hasUpperBound ? valueRange.upperEndpoint().toLocalDateTime() :getUpperEndpoint(tableNameCache); // 循环计算分表范围 Set<String> resultTableNames = new LinkedHashSet<>(); while (min.isBefore(max) || min.equals(max)) { String tableName = logicTableName + TABLE_SPLIT_SYMBOL + min.format(TABLE_SHARD_TIME_FORMATTER); resultTableNames.add(tableName); min = min.plusMinutes(1); } return ShardingAlgorithmTool.getShardingTablesAndCreate(logicTable, resultTableNames); } @Override public void init() { } @Override public String getType() { return null; } // -------------------------------------------------------------------------------------------------------------- // 私有方法 // -------------------------------------------------------------------------------------------------------------- /** * 获取 最小分片值 * @param tableNames 表名集合 * @return 最小分片值 */ private LocalDateTime getLowerEndpoint(Collection<String> tableNames) { Optional<LocalDateTime> optional = tableNames.stream() .map(o -> LocalDateTime.parse(o.replace(TABLE_SPLIT_SYMBOL, "") + "01 00:00:00", DATE_TIME_FORMATTER)) .min(Comparator.comparing(Function.identity())); if (optional.isPresent()) { return optional.get(); } else { log.error(">>>>>>>>>> 【ERROR】获取数据最小分表失败,请稍后重试,tableName:{}", tableNames); throw new IllegalArgumentException("获取数据最小分表失败,请稍后重试"); } } /** * 获取 最大分片值 * @param tableNames 表名集合 * @return 最大分片值 */ private LocalDateTime getUpperEndpoint(Collection<String> tableNames) { Optional<LocalDateTime> optional = tableNames.stream() .map(o -> LocalDateTime.parse(o.replace(TABLE_SPLIT_SYMBOL, "") + "01 00:00:00", DATE_TIME_FORMATTER)) .max(Comparator.comparing(Function.identity())); if (optional.isPresent()) { return optional.get(); } else { log.error(">>>>>>>>>> 【ERROR】获取数据最大分表失败,请稍后重试,tableName:{}", tableNames); throw new IllegalArgumentException("获取数据最大分表失败,请稍后重试"); } } }

5.ShardingAlgorithmTool.java 分片工具类

import com.alibaba.druid.util.StringUtils;
import com.demo.module.config.sharding.enums.ShardingTableCacheEnum;
import com.demo.module.utils.SpringUtil;
import lombok.extern.slf4j.Slf4j;
import org.apache.shardingsphere.driver.jdbc.core.datasource.ShardingSphereDataSource;
import org.apache.shardingsphere.infra.config.RuleConfiguration;
import org.apache.shardingsphere.mode.manager.ContextManager;
import org.apache.shardingsphere.sharding.algorithm.config.AlgorithmProvidedShardingRuleConfiguration;
import org.apache.shardingsphere.sharding.api.config.rule.ShardingTableRuleConfiguration;
import org.apache.shardingsphere.sharding.rule.TableRule;
import org.springframework.core.env.Environment;

import javax.sql.DataSource;
import java.lang.reflect.Field;
import java.lang.reflect.Modifier;
import java.sql.*;
import java.time.YearMonth;
import java.time.format.DateTimeFormatter;
import java.util.*;
import java.util.stream.Collectors;

/**
 * 

@Title ShardingAlgorithmTool *

@Description 按月分片算法工具 * * @author ACGkaka * @date 2022/12/20 14:03 */ @Slf4j public class ShardingAlgorithmTool { /** 表分片符号,例:t_contract_202201 中,分片符号为 "_" */ private static final String TABLE_SPLIT_SYMBOL = "_"; /** 数据库配置 */ private static final Environment ENV = SpringUtil.getApplicationContext().getEnvironment(); private static final String DATASOURCE_URL = ENV.getProperty("spring.shardingsphere.datasource.mydb.url"); private static final String DATASOURCE_USERNAME = ENV.getProperty("spring.shardingsphere.datasource.mydb.username"); private static final String DATASOURCE_PASSWORD = ENV.getProperty("spring.shardingsphere.datasource.mydb.password"); /** * 检查分表获取的表名是否存在,不存在则自动建表 * @param logicTable 逻辑表 * @param resultTableNames 真实表名,例:t_contract_202201 * @return 存在于数据库中的真实表名集合 */ public static Set<String> getShardingTablesAndCreate(ShardingTableCacheEnum logicTable, Collection<String> resultTableNames) { return resultTableNames.stream().map(o -> getShardingTableAndCreate(logicTable, o)).collect(Collectors.toSet()); } /** * 检查分表获取的表名是否存在,不存在则自动建表 * @param logicTable 逻辑表 * @param resultTableName 真实表名,例:t_contract_202201 * @return 确认存在于数据库中的真实表名 */ public static String getShardingTableAndCreate(ShardingTableCacheEnum logicTable, String resultTableName) { // 缓存中有此表则返回,没有则判断创建 if (logicTable.resultTableNamesCache().contains(resultTableName)) { return resultTableName; } else { // 未创建的表返回逻辑空表 boolean isSuccess = createShardingTable(logicTable, resultTableName); return isSuccess ? resultTableName : logicTable.logicTableName(); } } /** * 重载全部缓存 */ public static void tableNameCacheReloadAll() { Arrays.stream(ShardingTableCacheEnum.values()).forEach(ShardingAlgorithmTool::tableNameCacheReload); } /** * 重载指定分表缓存 * @param logicTable 逻辑表,例:t_contract */ public static void tableNameCacheReload(ShardingTableCacheEnum logicTable) { // 读取数据库中|所有表名 List<String> tableNameList = getAllTableNameBySchema(logicTable); // 删除旧的缓存(如果存在) logicTable.resultTableNamesCache().clear(); // 写入新的缓存 logicTable.resultTableNamesCache().addAll(tableNameList); // 动态更新配置 actualDataNodes actualDataNodesRefresh(logicTable); } /** * 获取所有表名 * @return 表名集合 * @param logicTable 逻辑表 */ public static List<String> getAllTableNameBySchema(ShardingTableCacheEnum logicTable) { List<String> tableNames = new ArrayList<>(); if (StringUtils.isEmpty(DATASOURCE_URL) || StringUtils.isEmpty(DATASOURCE_USERNAME) || StringUtils.isEmpty(DATASOURCE_PASSWORD)) { log.error(">>>>>>>>>> 【ERROR】数据库连接配置有误,请稍后重试,URL:{}, username:{}, password:{}", DATASOURCE_URL, DATASOURCE_USERNAME, DATASOURCE_PASSWORD); throw new IllegalArgumentException("数据库连接配置有误,请稍后重试"); } try (Connection conn = DriverManager.getConnection(DATASOURCE_URL, DATASOURCE_USERNAME, DATASOURCE_PASSWORD); Statement st = conn.createStatement()) { String logicTableName = logicTable.logicTableName(); try (ResultSet rs = st.executeQuery("show TABLES like '" + logicTableName + TABLE_SPLIT_SYMBOL + "%'")) { while (rs.next()) { String tableName = rs.getString(1); // 匹配分表格式 例:^(t\_contract_\d{6})$ if (tableName != null && tableName.matches(String.format("^(%s\\d{6})$", logicTableName + TABLE_SPLIT_SYMBOL))) { tableNames.add(rs.getString(1)); } } } } catch (SQLException e) { log.error(">>>>>>>>>> 【ERROR】数据库连接失败,请稍后重试,原因:{}", e.getMessage(), e); throw new IllegalArgumentException("数据库连接失败,请稍后重试"); } return tableNames; } /** * 动态更新配置 actualDataNodes * @param logicTable */ public static void actualDataNodesRefresh(ShardingTableCacheEnum logicTable) { try { // 获取数据分片节点 String dbName = "mydb"; String logicTableName = logicTable.logicTableName(); Set<String> tableNamesCache = logicTable.resultTableNamesCache(); log.info(">>>>>>>>>> 【INFO】更新分表配置,logicTableName:{},tableNamesCache:{}", logicTableName, tableNamesCache); // generate actualDataNodes String newActualDataNodes = tableNamesCache.stream().map(o -> String.format("%s.%s", dbName, o)).collect(Collectors.joining(",")); ShardingSphereDataSource shardingSphereDataSource = SpringUtil.getBean(ShardingSphereDataSource.class); updateShardRuleActualDataNodes(shardingSphereDataSource, logicTableName, newActualDataNodes); }catch (Exception e){ log.error("初始化 动态表单失败,原因:{}", e.getMessage(), e); } } // -------------------------------------------------------------------------------------------------------------- // 私有方法 // -------------------------------------------------------------------------------------------------------------- /** * 刷新ActualDataNodes */ private static void updateShardRuleActualDataNodes(ShardingSphereDataSource dataSource, String logicTableName, String newActualDataNodes) { // Context manager. ContextManager contextManager = dataSource.getContextManager(); // Rule configuration. String schemaName = "logic_db"; Collection<RuleConfiguration> newRuleConfigList = new LinkedList<>(); Collection<RuleConfiguration> oldRuleConfigList = dataSource.getContextManager() .getMetaDataContexts() .getMetaData(schemaName) .getRuleMetaData() .getConfigurations(); for (RuleConfiguration oldRuleConfig : oldRuleConfigList) { if (oldRuleConfig instanceof AlgorithmProvidedShardingRuleConfiguration) { // Algorithm provided sharding rule configuration AlgorithmProvidedShardingRuleConfiguration oldAlgorithmConfig = (AlgorithmProvidedShardingRuleConfiguration) oldRuleConfig; AlgorithmProvidedShardingRuleConfiguration newAlgorithmConfig = new AlgorithmProvidedShardingRuleConfiguration(); // Sharding table rule configuration Collection Collection<ShardingTableRuleConfiguration> newTableRuleConfigList = new LinkedList<>(); Collection<ShardingTableRuleConfiguration> oldTableRuleConfigList = oldAlgorithmConfig.getTables(); oldTableRuleConfigList.forEach(oldTableRuleConfig -> { if (logicTableName.equals(oldTableRuleConfig.getLogicTable())) { ShardingTableRuleConfiguration newTableRuleConfig = new ShardingTableRuleConfiguration(oldTableRuleConfig.getLogicTable(), newActualDataNodes); newTableRuleConfig.setTableShardingStrategy(oldTableRuleConfig.getTableShardingStrategy()); newTableRuleConfig.setDatabaseShardingStrategy(oldTableRuleConfig.getDatabaseShardingStrategy()); newTableRuleConfig.setKeyGenerateStrategy(oldTableRuleConfig.getKeyGenerateStrategy()); newTableRuleConfigList.add(newTableRuleConfig); } else { newTableRuleConfigList.add(oldTableRuleConfig); } }); newAlgorithmConfig.setTables(newTableRuleConfigList); newAlgorithmConfig.setAutoTables(oldAlgorithmConfig.getAutoTables()); newAlgorithmConfig.setBindingTableGroups(oldAlgorithmConfig.getBindingTableGroups()); newAlgorithmConfig.setBroadcastTables(oldAlgorithmConfig.getBroadcastTables()); newAlgorithmConfig.setDefaultDatabaseShardingStrategy(oldAlgorithmConfig.getDefaultDatabaseShardingStrategy()); newAlgorithmConfig.setDefaultTableShardingStrategy(oldAlgorithmConfig.getDefaultTableShardingStrategy()); newAlgorithmConfig.setDefaultKeyGenerateStrategy(oldAlgorithmConfig.getDefaultKeyGenerateStrategy()); newAlgorithmConfig.setDefaultShardingColumn(oldAlgorithmConfig.getDefaultShardingColumn()); newAlgorithmConfig.setShardingAlgorithms(oldAlgorithmConfig.getShardingAlgorithms()); newAlgorithmConfig.setKeyGenerators(oldAlgorithmConfig.getKeyGenerators()); newRuleConfigList.add(newAlgorithmConfig); } } // update context contextManager.alterRuleConfiguration(schemaName, newRuleConfigList); } /** * 创建分表 * @param logicTable 逻辑表 * @param resultTableName 真实表名,例:t_contract_202201 * @return 创建结果(true创建成功,false未创建) */ private static boolean createShardingTable(ShardingTableCacheEnum logicTable, String resultTableName) { // 根据日期判断,当前月份之后分表不提前创建 String month = resultTableName.replace(logicTable.logicTableName() + TABLE_SPLIT_SYMBOL,""); YearMonth shardingMonth = YearMonth.parse(month, DateTimeFormatter.ofPattern("yyyyMM")); if (shardingMonth.isAfter(YearMonth.now())) { return false; } synchronized (logicTable.logicTableName().intern()) { // 缓存中有此表 返回 if (logicTable.resultTableNamesCache().contains(resultTableName)) { return false; } // 缓存中无此表,则建表并添加缓存 executeSql(Collections.singletonList("CREATE TABLE IF NOT EXISTS `" + resultTableName + "` LIKE `" + logicTable.logicTableName() + "`;")); // 缓存重载 tableNameCacheReload(logicTable); } return true; } /** * 执行SQL * @param sqlList SQL集合 */ private static void executeSql(List<String> sqlList) { if (StringUtils.isEmpty(DATASOURCE_URL) || StringUtils.isEmpty(DATASOURCE_USERNAME) || StringUtils.isEmpty(DATASOURCE_PASSWORD)) { log.error(">>>>>>>>>> 【ERROR】数据库连接配置有误,请稍后重试,URL:{}, username:{}, password:{}", DATASOURCE_URL, DATASOURCE_USERNAME, DATASOURCE_PASSWORD); throw new IllegalArgumentException("数据库连接配置有误,请稍后重试"); } try (Connection conn = DriverManager.getConnection(DATASOURCE_URL, DATASOURCE_USERNAME, DATASOURCE_PASSWORD)) { try (Statement st = conn.createStatement()) { conn.setAutoCommit(false); for (String sql : sqlList) { st.execute(sql); } } catch (Exception e) { conn.rollback(); log.error(">>>>>>>>>> 【ERROR】数据表创建执行失败,请稍后重试,原因:{}", e.getMessage(), e); throw new IllegalArgumentException("数据表创建执行失败,请稍后重试"); } } catch (SQLException e) { log.error(">>>>>>>>>> 【ERROR】数据库连接失败,请稍后重试,原因:{}", e.getMessage(), e); throw new IllegalArgumentException("数据库连接失败,请稍后重试"); } } }

6.ShardingTablesLoadRunner.java 初始化缓存类

import org.springframework.boot.CommandLineRunner;
import org.springframework.core.annotation.Order;
import org.springframework.stereotype.Component;

/**
 * 

@Title ShardingTablesLoadRunner *

@Description 项目启动后,读取已有分表,进行缓存 * * @author ACGkaka * @date 2022/12/20 15:41 */ @Order(value = 1) // 数字越小,越先执行 @Component public class ShardingTablesLoadRunner implements CommandLineRunner { @Override public void run(String... args) { // 读取已有分表,进行缓存 ShardingAlgorithmTool.tableNameCacheReloadAll(); } }

7.SpringUtil.java Spring工具类

import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.core.env.Environment;
import org.springframework.stereotype.Component;

/**
 * 

@Title SpringUtil *

@Description Spring工具类 * * @author ACGkaka * @date 2022/12/20 14:39 */ @Component public class SpringUtil implements ApplicationContextAware { private static ApplicationContext applicationContext = null; @Override public void setApplicationContext(ApplicationContext applicationContext) throws BeansException { SpringUtil.applicationContext = applicationContext; } public static ApplicationContext getApplicationContext() { return SpringUtil.applicationContext; } public static <T> T getBean(Class<T> cla) { return applicationContext.getBean(cla); } public static <T> T getBean(String name, Class<T> cal) { return applicationContext.getBean(name, cal); } public static String getProperty(String key) { return applicationContext.getBean(Environment.class).getProperty(key); } }

8.源码测试

import com.demo.module.entity.User;
import com.demo.module.service.UserService;
import com.github.pagehelper.PageHelper;
import com.github.pagehelper.PageInfo;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.List;

@SpringBootTest
class SpringbootDemoApplicationTests {

    private final DateTimeFormatter DATE_TIME_FORMATTER = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");

    @Autowired
    private UserService userService;

    @Test
    void saveTest() {
        List<User> users = new ArrayList<>(3);
        LocalDateTime time1 = LocalDateTime.parse("2022-01-01 00:00:00", DATE_TIME_FORMATTER);
        LocalDateTime time2 = LocalDateTime.parse("2022-02-01 00:00:00", DATE_TIME_FORMATTER);
        users.add(new User("ACGkaka_1", "123456", 10, time1, time1));
        users.add(new User("ACGkaka_2", "123456", 11, time2, time2));
        userService.saveBatch(users);
    }

    @Test
    void listTest() {
        PageHelper.startPage(1, 1);
        List<User> users = userService.list();
        PageInfo<User> pageInfo = new PageInfo<>(users);
        System.out.println(">>>>>>>>>> 【Result】<<<<<<<<<< ");
        System.out.println(pageInfo);
    }
}

9.测试结果

Sharding-JDBC(六)5.1.0版本,实现按月分表、自动建表、自动刷新节点_第1张图片

新增和查询可以正常分页查询,测试成功。

10.代码地址

地址: https://gitee.com/acgkaka/SpringBootExamples/tree/master/springboot-sharding-jdbc-month-5.1.0





参考地址:

1.SharDingJDBC-5.1.0按月水平分表+读写分离,自动创表、自动刷新节点表,https://blog.csdn.net/weixin_51216079/article/details/123873967

2.shardingjdbc 5.1 是否支持java 动态加载 数据节点,而不是在配置文件中用表达式定义好,https://community.sphere-ex.com/t/topic/1025

你可能感兴趣的:(#,ShardingJDBC,java,数据库,spring)