Sharding-JDBC(四)集成dynamic-datasource

目录

    • 1.Maven依赖
    • 2.yml配置
    • 3.DataSourceConfig.java
    • 4.TUserService.java
    • 5.TUserServiceImpl.java
    • 6.测试代码
    • 7.测试结果
    • 8.源码地址

实现原理:

  • 通过 DataSourceConfig.java 将ShardingJDBC数据源配置为动态数据源之一。
  • 通过 @DS(DataSourceConfig.SHARDING_DATA_SOURCE_NAME) 使用 ShardingJDBC 的数据源进行分表操作。

1.Maven依赖


<dependency>
    <groupId>org.apache.shardingspheregroupId>
    <artifactId>sharding-jdbc-spring-boot-starterartifactId>
    <version>${shardingsphere.version}version>
dependency>


<dependency>
    <groupId>com.baomidougroupId>
    <artifactId>dynamic-datasource-spring-boot-starterartifactId>
    <version>3.3.2version>
dependency>

2.yml配置

server:
  port: 8081

spring:
  # 多数据源配置
  datasource:
    dynamic:
      primary: mydb1
      datasource:
        mydb1:
          url: jdbc:mysql://localhost:3306/mydb1?useUnicode=true&characterEncoding=utf-8&useSSL=true&serverTimezone=UTC
          username: root
          password: root
          driver-class-name: com.mysql.cj.jdbc.Driver

  # sharding-jdbc配置
  shardingsphere:
    # 打印sql
    props:
      sql:
        show: true
    datasource:
      names: mydb2
      mydb2:
        type: com.alibaba.druid.pool.DruidDataSource
        url: jdbc:mysql://localhost:3306/mydb2?useUnicode=true&characterEncoding=UTF-8&serverTimezone=Asia/Shanghai
        driver-class-name: com.mysql.cj.jdbc.Driver
        username: root
        password: root
        # 数据源其他配置
        initialSize: 5
        minIdle: 5
        maxActive: 20
        maxWait: 60000
        timeBetweenEvictionRunsMillis: 60000
        minEvictableIdleTimeMillis: 300000
        validationQuery: SELECT 1 FROM DUAL
        testWhileIdle: true
        testOnBorrow: false
        testOnReturn: false
        poolPreparedStatements: true
        # 配置监控统计拦截的filters,去掉后监控界面sql无法统计,'wall'用于防火墙
        #filters: stat,wall,log4j
        maxPoolPreparedStatementPerConnectionSize: 20
        useGlobalDataSourceStat: true
        connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=500
    sharding:
      # 表策略配置
      tables:
        # t_user 是逻辑表
        t_user:
          # 分表节点 可以理解为分表后的那些表 比如 t_user_1 ,t_user_2
          actualDataNodes: mydb2.t_user_$->{1..2}
          tableStrategy:
            inline:
              # 根据哪列分表
              shardingColumn: age
              # 分表算法 例如:age为奇数 -> t_user_2; age为偶数 -> t_user_1
              algorithmExpression: t_user_$->{age % 2 + 1}
#              keyGenerator:
#                type: SNOWFLAKE
#                # 对id列采用 sharding-jdbc的全局id生成策略
#                column: id
# mybatis-plus
mybatis-plus:
  mapper-locations: classpath*:/mapper/*Mapper.xml
  # 实体扫描,多个package用逗号或者分号分隔
  typeAliasesPackage: cn.agile.stats.*.entity
  # 测试环境打印sql
  configuration:
    log-impl: org.apache.ibatis.logging.stdout.StdOutImpl

3.DataSourceConfig.java

DataSourceConfig作用: 将ShardingJDBC数据源配置为动态数据源之一。

import com.baomidou.dynamic.datasource.DynamicRoutingDataSource;
import com.baomidou.dynamic.datasource.provider.AbstractDataSourceProvider;
import com.baomidou.dynamic.datasource.provider.DynamicDataSourceProvider;
import com.baomidou.dynamic.datasource.spring.boot.autoconfigure.DataSourceProperty;
import com.baomidou.dynamic.datasource.spring.boot.autoconfigure.DynamicDataSourceAutoConfiguration;
import com.baomidou.dynamic.datasource.spring.boot.autoconfigure.DynamicDataSourceProperties;
import org.apache.shardingsphere.shardingjdbc.jdbc.adapter.AbstractDataSourceAdapter;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringBootConfiguration;
import org.springframework.boot.autoconfigure.AutoConfigureBefore;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Lazy;
import org.springframework.context.annotation.Primary;

import javax.annotation.Resource;
import javax.sql.DataSource;
import java.util.Map;

/**
 * 

@Title DataSourceConfig *

@Description 动态数据源配置(切换为sharding-jdbc数据源 => @DS(DataSourceConfig.SHARDING_DATA_SOURCE_NAME)) * * @author ACGkaka * @date 2022/12/21 16:01 */ @Configuration @AutoConfigureBefore({DynamicDataSourceAutoConfiguration.class, SpringBootConfiguration.class}) public class DataSourceConfig { /** * 分表数据源名称 */ public static final String SHARDING_DATA_SOURCE_NAME = "sharding-data-source"; /** * 动态数据源配置项 */ @Autowired private DynamicDataSourceProperties properties; /** * sharding-jdbc有四种数据源,需要根据业务注入不同的数据源 *

* 1.未使用分片, 脱敏的名称(默认): shardingDataSource; * 2.主从数据源: masterSlaveDataSource; * 3.脱敏数据源:encryptDataSource; * 4.影子数据源:shadowDataSource */ @Lazy @Resource(name = "shardingDataSource") private AbstractDataSourceAdapter shardingDataSource; @Bean public DynamicDataSourceProvider dynamicDataSourceProvider() { Map<String, DataSourceProperty> datasourceMap = properties.getDatasource(); return new AbstractDataSourceProvider() { @Override public Map<String, DataSource> loadDataSources() { Map<String, DataSource> dataSourceMap = createDataSourceMap(datasourceMap); // 将 shardingjdbc 管理的数据源也交给动态数据源管理 dataSourceMap.put(SHARDING_DATA_SOURCE_NAME, shardingDataSource); return dataSourceMap; } }; } /** * 将动态数据源设置为首选的 * 当spring存在多个数据源时, 自动注入的是首选的对象 * 设置为主要的数据源之后,就可以支持sharding-jdbc原生的配置方式了 */ @Primary @Bean public DataSource dataSource(DynamicDataSourceProvider dynamicDataSourceProvider) { DynamicRoutingDataSource dataSource = new DynamicRoutingDataSource(); dataSource.setPrimary(properties.getPrimary()); dataSource.setStrict(properties.getStrict()); dataSource.setStrategy(properties.getStrategy()); dataSource.setProvider(dynamicDataSourceProvider); dataSource.setP6spy(properties.getP6spy()); dataSource.setSeata(properties.getSeata()); return dataSource; } }

4.TUserService.java

import com.demo.module.entity.TUser;
import com.baomidou.mybatisplus.extension.service.IService;

import java.util.List;

/**
 * 

* 用户表 服务类 *

* * @author ACGkaka * @since 2021-04-25 */
public interface TUserService extends IService<TUser> { /** * 查询 全部用户(mydb1数据库) * @return 全部用户 */ List<TUser> listFromDB1(); }

5.TUserServiceImpl.java

import com.baomidou.dynamic.datasource.annotation.DS;
import com.demo.module.config.DataSourceConfig;
import com.demo.module.entity.TUser;
import com.demo.module.mapper.TUserMapper;
import com.demo.module.service.TUserService;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import org.springframework.stereotype.Service;

import java.util.List;

/**
 * 

* 用户表 服务实现类 *

* * @author ACGkaka * @since 2021-04-25 */
@Service @DS(DataSourceConfig.SHARDING_DATA_SOURCE_NAME) public class TUserServiceImpl extends ServiceImpl<TUserMapper, TUser> implements TUserService { @DS("mydb1") @Override public List<TUser> listFromDB1() { // 查询 全部用户(mydb1数据库) return this.list(); } }

6.测试代码

@Test
void saveTest() {
    List<TUser> users = new ArrayList<>(3);
    users.add(new TUser("ACGkaka_1", "123456", 10));
    users.add(new TUser("ACGkaka_2", "123456", 11));
    users.add(new TUser("ACGkaka_3", "123456", 12));
    userService.saveBatch(users);
}

@Test
void listTest() {
    List<TUser> users1 = userService.listFromDB1();
    System.out.println(">>>>>>>>>> 【Result1】<<<<<<<<<< ");
    users1.forEach(System.out::println);
    List<TUser> users2 = userService.list();
    System.out.println(">>>>>>>>>> 【Result2】<<<<<<<<<< ");
    users2.forEach(System.out::println);
}

7.测试结果

查询没有数据插入的mydb1,没有查到数据:

Sharding-JDBC(四)集成dynamic-datasource_第1张图片

查询插入了 3 条数据的mydb2,查询到了 3 条:

Sharding-JDBC(四)集成dynamic-datasource_第2张图片

测试成功,数据根据动态数据源配置实现了对 mydb1 和 mydb2 两个数据库的操作。

8.源码地址

地址: https://gitee.com/acgkaka/SpringBootExamples/tree/master/springboot-sharding-jdbc-dynamic

整理完毕,完结撒花~





参考地址:

1.SpringBoot(50) 整合sharding-jdbc和多数据源,https://blog.csdn.net/qq_38225558/article/details/121107962

你可能感兴趣的:(#,ShardingJDBC,mybatis,java,mysql)